Solving Deutsch’s Problem using Entanglement Measurement Algorithm

2018 ◽  
Vol 6 (3) ◽  
pp. 107-111 ◽  
Author(s):  
Mohammed Zidan ◽  
Abdel-Haleem Abdel-Aty ◽  
Ahmed S. A. Mohamed ◽  
I. El-khayat ◽  
Mahmoud Abdel-Aty
Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1589
Author(s):  
Krzysztof Kołek ◽  
Andrzej Firlit ◽  
Krzysztof Piątek ◽  
Krzysztof Chmielowiec

Monitoring power quality (PQ) indicators is an important part of modern power grids’ maintenance. Among different PQ indicators, flicker severity coefficients Pst and Plt are measures of voltage fluctuations. In state-of-the-art PQ measuring devices, the flicker measurement channel is usually implemented as a dedicated processor subsystem. Implementation of the IEC 61000-4-15 compliant flicker measurement algorithm requires a significant amount of computational power. In typical PQ analysers, the flicker measurement is usually implemented as a part of the meter’s algorithm performed by the main processor. This paper considers the implementation of the flicker measurement as an FPGA module to offload the processor subsystem or operate as an IP core in FPGA-based system-on-chip units. The measurement algorithm is developed and validated as a Simulink diagram, which is then converted to a fixed-point representation. Parts of the diagram are applied for automatic VHDL code generation, and the classifier block is implemented as a local soft-processor system. A simple eight-bit processor operates within the flicker measurement coprocessor and performs statistical operations. Finally, an IP module is created that can be considered as a flicker coprocessor module. When using the coprocessor, the main processor’s only role is to trigger the coprocessor and read the results, while the coprocessor independently calculates the flicker coefficients.


Author(s):  
Shiping Li ◽  
Jingang Zhong ◽  
Weixin Ling ◽  
Rui Min ◽  
Zhuoming Chen ◽  
...  

Author(s):  
Christian Schwaferts ◽  
Patrick Schwaferts ◽  
Elisabeth von der Esch ◽  
Martin Elsner ◽  
Natalia P. Ivleva

AbstractMicro- and nanoplastic contamination is becoming a growing concern for environmental protection and food safety. Therefore, analytical techniques need to produce reliable quantification to ensure proper risk assessment. Raman microspectroscopy (RM) offers identification of single particles, but to ensure that the results are reliable, a certain number of particles has to be analyzed. For larger MP, all particles on the Raman filter can be detected, errors can be quantified, and the minimal sample size can be calculated easily by random sampling. In contrast, very small particles might not all be detected, demanding a window-based analysis of the filter. A bootstrap method is presented to provide an error quantification with confidence intervals from the available window data. In this context, different window selection schemes are evaluated and there is a clear recommendation to employ random (rather than systematically placed) window locations with many small rather than few larger windows. Ultimately, these results are united in a proposed RM measurement algorithm that computes confidence intervals on-the-fly during the analysis and, by checking whether given precision requirements are already met, automatically stops if an appropriate number of particles are identified, thus improving efficiency.


Author(s):  
Jinbo Zhang ◽  
Yutong Zhang ◽  
Ding Yan ◽  
Jiayuan Shan ◽  
Zhaodi Wang ◽  
...  

2021 ◽  
pp. bjophthalmol-2020-318304
Author(s):  
Hiroshi Murata ◽  
Ryo Asaoka ◽  
Yuri Fujino ◽  
Masato Matsuura ◽  
Kazunori Hirasawa ◽  
...  

Background/aimsWe previously reported that the visual field (VF) prediction model using the variational Bayes linear regression (VBLR) is useful for accurately predicting VF progression in glaucoma (Invest Ophthalmol Vis Sci. 2014, 2018). We constructed a VF measurement algorithm using VBLR, and the purpose of this study was to investigate its usefulness.Method122 eyes of 73 patients with open-angle glaucoma were included in the current study. VF measurement was performed using the currently proposed VBLR programme with AP-7700 perimetry (KOWA). VF measurements were also conducted using the Swedish interactive thresholding algorithm (SITA) standard programme with Humphrey field analyser. VF measurements were performed using the 24–2 test grid. Visual sensitivities, test–retest reproducibility and measurement duration were compared between the two algorithms.ResultMean mean deviation (MD) values with SITA standard were −7.9 and −8.7 dB (first and second measurements), whereas those with VBLR-VF were −8.2 and −8.0 dB, respectively. There were no significant differences across these values. The correlation coefficient of MD values between the 2 algorithms was 0.97 or 0.98. Test–retest reproducibility did not differ between the two algorithms. Mean measurement duration with SITA standard was 6 min and 02 s or 6 min and 00 s (first or second measurement), whereas a significantly shorter duration was associated with VBLR-VF (5 min and 23 s or 5 min and 30 s).ConclusionVBLR-VF reduced test duration while maintaining the same accuracy as the SITA-standard.


Sign in / Sign up

Export Citation Format

Share Document