Fractional-Order Delayed Salmonella Transmission Model: A Numerical Simulation

2022 ◽  
Vol 8 (1) ◽  
pp. 63-76
Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 341
Author(s):  
Shaobo He ◽  
Hayder Natiq ◽  
Santo Banerjee ◽  
Kehui Sun

By applying the Adams-Bashforth-Moulton method (ABM), this paper explores the complexity and synchronization of a fractional-order laser dynamical model. The dynamics under the variance of derivative order q and parameters of the system have examined using the multiscale complexity algorithm and the bifurcation diagram. Numerical simulation outcomes demonstrate that the system generates chaos with the decreasing of q. Moreover, this paper designs the coupled fractional-order network of laser systems and subsequently obtains its numerical solution using ABM. These solutions have demonstrated chimera states of the proposed fractional-order laser network.


2019 ◽  
Vol 12 (4) ◽  
pp. 1533-1552
Author(s):  
Kambire Famane ◽  
Gouba Elisée ◽  
Tao Sadou ◽  
Blaise Some

In this paper, we have formulated a new deterministic model to describe the dynamics of the spread of chikunguya between humans and mosquitoes populations. This model takes into account the variation in mortality of humans and mosquitoes due to other causes than chikungunya disease, the decay of acquired immunity and the immune sytem boosting. From the analysis, itappears that the model is well posed from the mathematical and epidemiological standpoint. The existence of a single disease free equilibrium has been proved. An explicit formula, depending on the parameters of the model, has been obtained for the basic reproduction number R0 which is used in epidemiology. The local asymptotic stability of the disease free equilibrium has been proved. The numerical simulation of the model has confirmed the local asymptotic stability of the diseasefree equilbrium and the existence of endmic equilibrium. The varying effects of the immunity parameters has been analyzed numerically in order to provide better conditions for reducing the transmission of the disease.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Chernet Tuge Deressa ◽  
Gemechis File Duressa

AbstractWe consider a SEAIR epidemic model with Atangana–Baleanu fractional-order derivative. We approximate the solution of the model using the numerical scheme developed by Toufic and Atangana. The numerical simulation corresponding to several fractional orders shows that, as the fractional order reduces from 1, the spread of the endemic grows slower. Optimal control analysis and simulation show that the control strategy designed is operative in reducing the number of cases in different compartments. Moreover, simulating the optimal profile revealed that reducing the fractional-order from 1 leads to the need for quick starting of the application of the designed control strategy at the maximum possible level and maintaining it for the majority of the period of the pandemic.


Author(s):  
Abir Khadhraoui ◽  
Khaled Jelassi ◽  
Jean-Claude Trigeassou ◽  
Pierre Melchior

A bad initialization of output-error (OE) technique can lead to an inappropriate identification results. In this paper, we introduce a solution to this problem; the basic idea is to estimate the parameters and the fractional order of the noninteger system by a new approach of least-squares (LS) method based on repeated fractional integration to initialize OE technique. It will be shown that LS method offers a good initialization to OE algorithm and leads to acceptable identification results. The performance of the proposed method is shown through numerical simulation examples.


2018 ◽  
Vol 28 (07) ◽  
pp. 1850082 ◽  
Author(s):  
Jianhua Yang ◽  
Dawen Huang ◽  
Miguel A. F. Sanjuán ◽  
Houguang Liu

We investigate the vibrational resonance by the numerical simulation and theoretical analysis in an overdamped system with fractional order potential nonlinearities. The nonlinearity is a fractional power function with deflection, in which the response amplitude presents vibrational resonance phenomenon for any value of the fractional exponent. The response amplitude of vibrational resonance at low-frequency is deduced by the method of direct separation of slow and fast motions. The results derived from the theoretical analysis are in good agreement with those of numerical simulation. The response amplitude decreases with the increase of the fractional exponent for weak excitations. The amplitude of the high-frequency excitation can induce the vibrational resonance to achieve the optimal response amplitude. For the overdamped systems, the nonlinearity is the crucial and necessary condition to induce vibrational resonance. The response amplitude in the nonlinear system is usually not larger than that in the corresponding linear system. Hence, the nonlinearity is not a sufficient factor to amplify the response to the low-frequency excitation. Furthermore, the resonance may be also induced by only a single excitation acting on the nonlinear system. The theoretical analysis further proves the correctness of the numerical simulation. The results might be valuable in weak signal processing.


Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
D. Abraham Vianny ◽  
Mary Jacintha ◽  
Fatma Bozkurt Yousef

Towards the end of 2019, the world witnessed the outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19), a new strain of coronavirus that was unidentified in humans previously. In this paper, a new fractional-order Susceptible–Exposed–Infected–Hospitalized–Recovered (SEIHR) model is formulated for COVID-19, where the population is infected due to human transmission. The fractional-order discrete version of the model is obtained by the process of discretization and the basic reproductive number is calculated with the next-generation matrix approach. All equilibrium points related to the disease transmission model are then computed. Further, sufficient conditions to investigate all possible equilibria of the model are established in terms of the basic reproduction number (local stability) and are supported with time series, phase portraits and bifurcation diagrams. Finally, numerical simulations are provided to demonstrate the theoretical findings.


Author(s):  
Meng Jiao Wang ◽  
Xiao Han Liao ◽  
Yong Deng ◽  
Zhi Jun Li ◽  
Yi Ceng Zeng ◽  
...  

Systems with hidden attractors have been the hot research topic of recent years because of their striking features. Fractional-order systems with hidden attractors are newly introduced and barely investigated. In this paper, a new 4D fractional-order chaotic system with hidden attractors is proposed. The abundant and complex hidden dynamical behaviors are studied by nonlinear theory, numerical simulation, and circuit realization. As the main mode of electrical behavior in many neuroendocrine cells, bursting oscillations (BOs) exist in this system. This complicated phenomenon is seldom found in the chaotic systems, especially in the fractional-order chaotic systems without equilibrium points. With the view of practical application, the spectral entropy (SE) algorithm is chosen to estimate the complexity of this fractional-order system for selecting more appropriate parameters. Interestingly, there is a state variable correlated with offset boosting that can adjust the amplitude of the variable conveniently. In addition, the circuit of this fractional-order chaotic system is designed and verified by analog as well as hardware circuit. All the results are very consistent with those of numerical simulation.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769006 ◽  
Author(s):  
Devendra Kumar ◽  
Jagdev Singh ◽  
Maysaa Al Qurashi ◽  
Dumitru Baleanu

In this work, we aim to analyze the logistic equation with a new derivative of fractional order termed in Caputo–Fabrizio sense. The logistic equation describes the population growth of species. The existence of the solution is shown with the help of the fixed-point theory. A deep analysis of the existence and uniqueness of the solution is discussed. The numerical simulation is conducted with the help of the iterative technique. Some numerical simulations are also given graphically to observe the effects of the fractional order derivative on the growth of population.


Sign in / Sign up

Export Citation Format

Share Document