scholarly journals Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel

2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769006 ◽  
Author(s):  
Devendra Kumar ◽  
Jagdev Singh ◽  
Maysaa Al Qurashi ◽  
Dumitru Baleanu

In this work, we aim to analyze the logistic equation with a new derivative of fractional order termed in Caputo–Fabrizio sense. The logistic equation describes the population growth of species. The existence of the solution is shown with the help of the fixed-point theory. A deep analysis of the existence and uniqueness of the solution is discussed. The numerical simulation is conducted with the help of the iterative technique. Some numerical simulations are also given graphically to observe the effects of the fractional order derivative on the growth of population.

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Aman Ullah ◽  
Thabet Abdeljawad ◽  
Shabir Ahmad ◽  
Kamal Shah

In this article, we discuss the existence and uniqueness of the solution of the fractional-order epidemic model of childhood diseases by using fixed point theory. The technique of natural transform coupled with the Adomian decomposition is used to find the solution of the proposed model. At the end of the article, the model is demonstrated with appropriate numerical and graphical description.


2021 ◽  
Vol 46 (1) ◽  
pp. 97-109
Author(s):  
Esmehan Uçar ◽  
Sümeyra Uçar ◽  
Fırat Evirgen ◽  
Necati Özdemir

AbstractSmoking is the most lethal social poisoning event. The World Health Organization defines smoking as the most important preventable cause of disease. Around 4.9 million people worldwide die from smoking every year. In order to analysis this matter, we aim to investigate an e-cigarette smoking model with Atangana-Baleanu fractional derivative. We obtain the existence conditions of the solution for this fractional model utilizing fixed-point theory. After giving existence conditions, the uniqueness of the solution is proved. Finally, to show the effect of the Atangana-Baleanu fractional derivative on the model, we give some numerical results supported by illustrative graphics.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Samia Bushnaq ◽  
Kamal Shah ◽  
Hussam Alrabaiah

Abstract This paper investigates a new model on coronavirus-19 disease (COVID-19) with three compartments including susceptible, infected, and recovered class under Mittag-Leffler type derivative. The mentioned derivative has been introduced by Atangana, Baleanu, and Caputo abbreviated as $(\mathcal{ABC})$ ( ABC ) . Upon utilizing fixed point theory, we first prove the existence of at least one solution for the considered model and its uniqueness. Also, some results about stability of Ulam–Hyers type are also established. By applying a numerical technique called fractional Adams–Bashforth (AB) method, we develop a scheme for the approximate solutions to the considered model. Using some real available data, we perform the concerned numerical simulation corresponding to different values of fractional order.


2019 ◽  
Vol 14 (3) ◽  
pp. 311 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Zakia Hammouch ◽  
Dumitru Baleanu

A virus that causes hepatitis E is known as (HEV) and regarded on of the reason for lever inflammation. In mathematical aspects a very low attention has been paid to HEV dynamics. Therefore, the present work explores the HEV dynamics in fractional derivative. The Caputo–Fabriizo derivative is used to study the dynamics of HEV. First, the essential properties of the model will be presented and then describe the HEV model with CF derivative. Application of fixed point theory is used to obtain the existence and uniqueness results associated to the model. By using Adams–Bashfirth numerical scheme the solution is obtained. Some numerical results and tables for arbitrary order derivative are presented.


2021 ◽  
Vol 6 (12) ◽  
pp. 13622-13633
Author(s):  
Xiaoping Li ◽  
◽  
Dexin Chen ◽  

<abstract><p>The solvability of some $ p $-Laplace boundary value problems with Caputo fractional derivative are discussed. By using the fixed-point theory and analysis techniques, some existence results of one or three non-negative solutions are obtained. Two examples showed that the conditions used in this paper are somewhat easy to check.</p></abstract>


Fractals ◽  
2021 ◽  
Author(s):  
HUSSAM ALRABAIAH ◽  
MATI UR RAHMAN ◽  
IBRAHIM MAHARIQ ◽  
SAMIA BUSHNAQ ◽  
MUHAMMAD ARFAN

In this paper, we consider a fractional mathematical model describing the co-infection of HBV and HCV under the non-singular Mittag-Leffler derivative. We also investigate the qualitative analysis for at least one solution and a unique solution by applying the approach fixed point theory. For an approximate solution, the technique of the iterative fractional order Adams–Bashforth scheme has been implemented. The simulation for the proposed scheme has been drawn at various fractional order values lying between (0,1) and integer-order of 1 via using Matlab. All the compartments have shown convergence and stability with time. A detailed comparative result has been given by the different fractional orders, which showed that the stability was achieved more rapidly at low orders.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Gauhar Ali ◽  
Ghazala Nazir ◽  
Kamal Shah ◽  
Yongjin Li

This manuscript is devoted to investigate qualitative theory of existence and uniqueness of the solution to a dynamical system of an infectious disease known as measles. For the respective theory, we utilize fixed point theory to construct sufficient conditions for existence and uniqueness of the solution. Some results corresponding to Hyers–Ulam stability are also investigated. Furthermore, some semianalytical results are computed for the considered system by using integral transform due to the Laplace and decomposition technique of Adomian. The obtained results are presented by graphs also.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 672 ◽  
Author(s):  
Mouffak Benchohra ◽  
Soufyane Bouriah ◽  
Juan J. Nieto

We present in this work the existence results and uniqueness of solutions for a class of boundary value problems of terminal type for fractional differential equations with the Hilfer–Katugampola fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Banach contraction principle and Krasnoselskii’s fixed point theorem. We illustrate our main findings, with a particular case example included to show the applicability of our outcomes.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu

We discuss the existence and uniqueness of solution to nonlinear fractional order ordinary differential equations(Dα-ρtDβ)x(t)=f(t,x(t),Dγx(t)),t∈(0,1)with boundary conditionsx(0)=x0,  x(1)=x1or satisfying the initial conditionsx(0)=0,  x′(0)=1, whereDαdenotes Caputo fractional derivative,ρis constant,1<α<2,and0<β+γ≤α. Schauder's fixed-point theorem was used to establish the existence of the solution. Banach contraction principle was used to show the uniqueness of the solution under certain conditions onf.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Areej S. S. Alharbi ◽  
Hamed H. Alsulami ◽  
Erdal Karapinar

We investigate the existence and uniqueness of certain operators which form a new contractive condition via the combining of the notions of admissible function and simulation function contained in the context of completeb-metric spaces. The given results not only unify but also generalize a number of existing results on the topic in the corresponding literature.


Sign in / Sign up

Export Citation Format

Share Document