scholarly journals MYC-driven aggressive B-cell lymphomas: biology, entity, differential diagnosis and clinical management

Oncotarget ◽  
2015 ◽  
Vol 6 (36) ◽  
pp. 38591-38616 ◽  
Author(s):  
Qingqing Cai ◽  
L. Jeffrey Medeiros ◽  
Xiaolu Xu ◽  
Ken H. Young
Author(s):  
Sebastian Böttcher ◽  
Robby Engelmann ◽  
Georgiana Grigore ◽  
Paula Carolina Fernandez ◽  
Joana Caetano ◽  
...  

Reproducible expert-independent flow-cytometric criteria for the differential diagnoses between mature B-cell neoplasms are lacking. We developed an algorithm-driven classification for these lymphomas by flow cytometry and compared it to the WHO gold standard diagnosis. Overall, 662 samples from 662 patients representing nine disease categories were analyzed at 9 laboratories using the previously published EuroFlow 5-tube-8-color B-cell chronic lymphoproliferative disease antibody panel. Expression levels of all 26 markers from the panel were plotted by B-cell entity to construct a univariate, fully standardized diagnostic reference library. For multivariate data analysis we subsequently utilized Canonical Correlation Analysis of 176 training cases to project the multi-dimensional space of all 26 immunophenotypic parameters into 36 two-dimensional plots for each possible pair-wise differential diagnosis. Diagnostic boundaries were fitted according to the distribution of the immunophenotypes of a given differential diagnosis. A diagnostic algorithm based on these projections was developed and subsequently validated using 486 independent cases. Negative predictive values exceeding 92.1% were observed for all disease categories except for follicular lymphoma. Particularly high positive predictive values were returned in chronic lymphocytic leukemia (99.1%), hairy cell leukemia (97.2%), follicular lymphoma (97.2%) and mantle cell lymphoma (95.4%). Burkitt and CD10+ diffuse large B-cell lymphomas were difficult to distinguish by the algorithm. A similar ambiguity was observed between marginal zone, lymphoplasmacytic, and CD10- diffuse large B-cell lymphomas. The specificity of the approach exceeded 98% for all entities. The univariate immunophenotypic library and the multivariate expert-independent diagnostic algorithm might contribute to increased reproducibility of future diagnostics in mature B-cell neoplasms.


1994 ◽  
Vol 91 (2) ◽  
pp. 114-114
Author(s):  
Wolfgang Eisterer ◽  
Wolfgang Hilbe ◽  
Christoph Ludescher ◽  
Josef Thaler

Blood ◽  
2017 ◽  
Vol 130 (4) ◽  
pp. 410-423 ◽  
Author(s):  
Justin Taylor ◽  
Wenbin Xiao ◽  
Omar Abdel-Wahab

Abstract Genomic analysis has greatly influenced the diagnosis and clinical management of patients affected by diverse forms of hematologic malignancies. Here, we review how genetic alterations define subclasses of patients with acute leukemias, myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPNs), non-Hodgkin lymphomas, and classical Hodgkin lymphoma. These include new subtypes of acute myeloid leukemia defined by mutations in RUNX1 or BCR-ABL1 translocations as well as a constellation of somatic structural DNA alterations in acute lymphoblastic leukemia. Among patients with MDS, detection of mutations in SF3B1 define a subgroup of patients with the ring sideroblast form of MDS and a favorable prognosis. For patients with MPNs, detection of the BCR-ABL1 fusion delineates chronic myeloid leukemia from classic BCR-ABL1− MPNs, which are largely defined by mutations in JAK2, CALR, or MPL. In the B-cell lymphomas, detection of characteristic rearrangements involving MYC in Burkitt lymphoma, BCL2 in follicular lymphoma, and MYC/BCL2/BCL6 in high-grade B-cell lymphomas are essential for diagnosis. In T-cell lymphomas, anaplastic large-cell lymphoma is defined by mutually exclusive rearrangements of ALK, DUSP22/IRF4, and TP63. Genetic alterations affecting TP53 and the mutational status of the immunoglobulin heavy-chain variable region are important in clinical management of chronic lymphocytic leukemia. Additionally, detection of BRAFV600E mutations is helpful in the diagnosis of classical hairy cell leukemia and a number of histiocytic neoplasms. Numerous additional examples provided here demonstrate how clinical evaluation of genomic alterations have refined classification of myeloid neoplasms and major forms of lymphomas arising from B, T, or natural killer cells.


2015 ◽  
Vol 144 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Samir Turakhia ◽  
Christopher Lanigan ◽  
Fatima Hamadeh ◽  
Steven H. Swerdlow ◽  
Raymond R. Tubbs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document