scholarly journals Antagonists of growth hormone-releasing hormone suppress in vivo tumor growth and gene expression in triple negative breast cancers

Oncotarget ◽  
2012 ◽  
Vol 3 (9) ◽  
pp. 988-997 ◽  
Author(s):  
Roberto Perez ◽  
Andrew V. Schally ◽  
Irving Vidaurre ◽  
Ricardo Rincon ◽  
Norman L. Block ◽  
...  
Author(s):  
Stefan Buchholz ◽  
Stephan Seitz ◽  
Jörg B. Engel ◽  
Alberto Montero ◽  
Olaf Ortmann ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that is clinically negative for the expression of estrogen and progesterone receptors (ER/PR) and human epidermal growth factor receptor-2 (HER2). Patients with TNBC have a worse clinical outcome, as measured by time to metastasis and median overall survival. Chemotherapy has been the mainstay of treatment of TNBC but responses are disappointing. A substantial proportion of TNBC expresses luteinizing hormone-releasing hormone (LHRH), receptors for LHRH, in addition to receptors for growth hormone-releasing hormone (GHRH). These receptors represent potential therapeutic targets. Potent antagonists of GHRH and LHRH receptors have been developed in recent years and these antagonists inhibit the growth, tumorigenicity and metastatic potential of various human experimental malignancies. These antagonists could be utilized for the treatment of TNBC. The targeted cytotoxic analog of LHRH, AN-152 (AEZS-108) containing doxorubicin, must also be strongly considered for therapy of TNBC. Experimental studies suggest the merit of clinical trials with LHRH antagonists and AEZS-108 in TNBC patients.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Maya A. Barrow ◽  
Megan E. Martin ◽  
Alisha Coffey ◽  
Portia L. Andrews ◽  
Gieira S. Jones ◽  
...  

Abstract Background In the USA, the breast cancer mortality rate is 41% higher for African-American women than non-Hispanic White women. While numerous gene expression studies have classified biological features that vary by race and may contribute to poorer outcomes, few studies have experimentally tested these associations. CRYβB2 gene expression has drawn particular interest because of its association with overall survival and African-American ethnicity in multiple cancers. Several reports indicate that overexpression of the CRYβB2 pseudogene, CRYβB2P1, and not CRYβB2 is linked with race and poor outcome. It remains unclear whether either or both genes are linked to breast cancer outcomes. This study investigates CRYβB2 and CRYβB2P1 expression in human breast cancers and breast cancer cell line models, with the goal of elucidating the mechanistic contribution of CRYβB2 and CRYβB2P1 to racial disparities. Methods Custom scripts for CRYβB2 or CRYβB2P1 were generated and used to identify reads that uniquely aligned to either gene. Gene expression according to race and tumor subtype were assessed using all available TCGA breast cancer RNA sequencing alignment samples (n = 1221). In addition, triple-negative breast cancer models engineered to have each gene overexpressed or knocked out were developed and evaluated by in vitro, biochemical, and in vivo assays to identify biological functions. Results We provide evidence that CRYβB2P1 is expressed at higher levels in breast tumors compared to CRYβB2, but only CRYβB2P1 is significantly increased in African-American tumors relative to White American tumors. We show that independent of CRYβB2, CRYβB2P1 enhances tumorigenesis in vivo via promoting cell proliferation. Our data also reveal that CRYβB2P1 may function as a non-coding RNA to regulate CRYβB2 expression. A key observation is that the combined overexpression of both genes was found to suppress cell growth. CRYβB2 overexpression in triple-negative breast cancers increases invasive cellular behaviors, tumor growth, IL6 production, immune cell chemoattraction, and the expression of metastasis-associated genes. These data underscore that both CRYβB2 and CRYβB2P1 promote tumor growth, but their mechanisms for tumor promotion are likely distinct. Conclusions Our findings provide novel data emphasizing the need to distinguish and study the biological effects of both CRYβB2 and CRYβB2P1 as both genes independently promote tumor progression. Our data demonstrate novel molecular mechanisms of two understudied, disparity-linked molecules.


2018 ◽  
Vol 115 (47) ◽  
pp. 12028-12033 ◽  
Author(s):  
Andrew V. Schally ◽  
Haibo Wang ◽  
Jinlin He ◽  
Renzhi Cai ◽  
Wei Sha ◽  
...  

The effects of the growth hormone-releasing hormone (GHRH) agonist MR409 on various human cancer cells were investigated. In H446 small cell lung cancer (SCLC) and HCC827 and H460 (non-SCLC) cells, MR409 promoted cell viability, reduced cell apoptosis, and induced the production of cellular cAMP in vitro. Western blot analyses showed that treatment of cancer cells with MR409 up-regulated the expression of cyclins D1 and D2 and cyclin-dependent kinases 4 and 6, down-regulated p27kip1, and significantly increased the expression of the pituitary-type GHRH receptor (pGHRH-R) and its splice-variant (SV1). Hence, in vitro MR409 exerts agonistic action on lung cancer cells in contrast to GHRH antagonists. However, in vivo, MR409 inhibited growth of lung cancers xenografted into nude mice. MR409 given s.c. at 5 μg/day for 4 to 8 weeks significantly suppressed growth of HCC827, H460, and H446 tumors by 48.2%, 48.7%, and 65.6%, respectively. This inhibition of tumor growth by MR409 was accompanied by the down-regulation of the expression of pGHRH-R and SV1 in the pituitary gland and tumors. Tumor inhibitory effects of MR409 in vivo were also observed in other human cancers, including gastric, pancreatic, urothelial, prostatic, mammary, and colorectal. This inhibition of tumor growth parallel to the down-regulation of GHRH-Rs is similar and comparable to the suppression of sex hormone-dependent cancers after the down-regulation of receptors for luteinizing hormone-releasing hormone (LHRH) by LHRH agonists. Further oncological investigations with GHRH agonists are needed to elucidate the underlying mechanisms.


Sign in / Sign up

Export Citation Format

Share Document