Biogas production out of organic waste and plant biomass

2019 ◽  
Vol 6 ◽  
pp. 37-41
Author(s):  
Yulia Karaeva ◽  
Svetlana Timofeeva
Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2010 ◽  
Vol 101 (24) ◽  
pp. 9527-9535 ◽  
Author(s):  
Ewa Klimiuk ◽  
Tomasz Pokój ◽  
Wojciech Budzyński ◽  
Bogdan Dubis

2007 ◽  
Vol 98 (8) ◽  
pp. 1664-1669 ◽  
Author(s):  
V.K. Verma ◽  
Y.P. Singh ◽  
J.P.N. Rai

2018 ◽  
Vol 73 ◽  
pp. 01019
Author(s):  
Elisabeth Rianawati ◽  
Enri Damanhuri ◽  
Marisa Handajani ◽  
Tri Padmi

Bandung City is one of the big cities in Indonesia that grappled with waste problem. There is 1,500 ton of waste produced daily, of which 65% is organic. In addition, the water content of the waste could reach 80% during rainy season, given that the waste is commonly collected in open space before transported to the final disposal area. In order to tackle this issue, the municipality of Bandung has started to implement anaerobic digesters to treat kitchen waste since 2013 in an attempt to reduce organic waste. There are three scales of bio-digesters that have been implemented: city 2 ton, communal (20-1000 kg) and household scale (20 kg), which comprise of 1 unit, 15 units and 100 units respectively. This study evaluate the efficiency and biogas productivity of each bio-digesters type. We analyzed 30 unit and 14 unit of household and communal biodigesters respectively. The waste input, slurry output and biogas production were estimated based on average of daily basis. Both the input and output of the biodigesters were characterized (TS, VS, COD) to gain further understanding. This study provide facts and figures to improve the further implementation of household bio-digesters in Bandung City.


Author(s):  
Pranas Baltrėnas ◽  
Mindaugas Kvasauskas

The paper presents the findings of experimental investigation of biogas production using hen manure and sewage sludge with fatty waste (from margarine production). The following mixtures were made using this organic waste: hen manure and sewage sludge were mixed with fatty waste at 75% : 25%, 50% : 50% and 25% : 75% in volume. The paper analyses quantitative and qualitative composition of biogas: gas emission content, the concentrations of methane, sulphuretted hydrogen and oxygen in it as well as temperature and pH change during the experiment. Mixing hen manure with fatty waste at 75% : 25% and maintaining psychrophilic temperature mode, the highest biogas output (0.09 m3) from 0.2 m3 substrate in 32 days was recorded. When using the mixture of sewage sludge and fatty waste at 75% : 25% and maintaining psychrophilic temperature mode, the highest biogas output (0.10 m) from 0.2 m substrate in 32 days was recorded. When using these mixtures, the concentration of methane was also the highest, and the average values reached 58.5% (with hen manure) and 61.7% (with sewage sludge). The evaluation of gas emissions and methane concentration in gas shows that the most efficient use of biogas could be obtained using biogas emitted from the mixture of hen manure and sewage sludge with fatty waste mixed at 75% : 25%. The concentration of sulphuretted hydrogen in biogas did not exceed 3%, the concentration of oxygen decreased from 4.9 % to 1.8%. pH indicator was decreasing when more fatty waste was added to the mixture. When using hen manure, the average value of pH changed from 6.4 to 6.3, when using sewage sludge ‐ from 6.6 to 6.3. Santrauka Pateikiami eksperimentinių biodujų gamybos tyrimų, naudojant vištų mėšlą ir nuotekų valymo dumblą su riebalinėmis (margarino gamybos) atliekomis, rezultatai. Iš šių organinių atliekų buvo paruošti mišiniai: vištų mėšlas bei nuotekų valymo dumblas buvo maišomas su riebalinėmis atliekomis 75 % : 25 %, 50 % : 50 % ir 25 % : 75 %. Darbe nagrinėjama biodujų kiekybinė ir kokybinė sudėtis: išsiskyrusių dujų kiekis, metano, sieros vandenilio ir deguonies koncentracija jose, temperatūros bei pH pokytis eksperimento metu. Eksperimentų metu bioreaktoriuose buvo palaikomas psichrofilinis temperatūrinis režimas. Nustatyta, kad didžiausias biodujų kiekis (0,09 m3 ) išsiskiria vištų mėšlą maišant su riebalinėmis atliekomis santykiu 75 % : 25 %. Naudojant nuotekų valymo dumblo ir riebalinių atliekų mišinį (75 % : 25 %), taip pat gauta didžiausia biodujų išeiga per visą eksperimento laikotarpį – 0,10 m3 . Metano koncentracija naudojant šiuos mišinius taip pat buvo didžiausia. Vidutinė reikšmė siekė 58,5 % (su vištų mėšlu) bei 61,7 % (su nuotekų dumblu). Įvertinus išsiskyrusių dujų kiekį ir metano koncentraciją jose, nustatyta, kad efektyviausiai būtų galima naudoti biodujas, išsiskyrusias iš vištų mėšlo ir nuotekų valymo dumblo su riebalinėmis atliekomis, kurių santykis 75 % : 25 %. Sieros vandenilio koncentracija biodujose neviršijo 3 %, deguonies koncentracija mažėjo nuo 4,9 % iki 1,8 %. pH rodiklis mažėjo į biomasės mišinį įdedant daugiau riebalinių atliekų. Naudojant vištų mėšlą vidutinė pH reikšmė kito nuo 6,4 iki 6,3, naudojant nuotekų valymo dumblą – nuo 6,6 iki 6,3. Резюме Представлены результаты экспериментальных исследований по производству биогаза с использованием куриного помета и ила сточных вод с жировыми отходами (от производства маргарина). Были исследованы следующие смеси из органических отходов: куриный помет и ил сточных вод были смешаны с жировыми отходами в объеме 75% : 25%, 50% : 50% и 25% : 75%. Проанализирован количественный и качественный состав биогаза: газовое содержание эмиссии, концентрации метана, сероводорода и кислорода, а также изменение температуры и фактора pH в течение эксперимента. Во время эксперимента в биореакторе поддерживался психрофильный температурный режим. Было установлено, что при смешивании куриного помета с жировыми отходами в соотношении 75% : 25% и поддерживании психрофильного температурного режима наибольший выпуск биогаза (от 0,09 м3 до 0,2 м3 субстрата) обнаружен спустя 32 дня. При использовании смеси из ила сточных вод и жировых отходов в соотношении 75% : 25% и поддерживании психрофильного температурного режима был установлен наибольший выпуск биогаза (от 0,10 м3 до 0,2 м3 субстрата) спустя 32 дня. При использовании этих смесей концентрация метана также была самая большая, ее средние значения составляли 58,5% (с куриным пометом) и 61,7% (с илом сточных вод). В результате оценки газовой эмиссии и концентрации метана в эмиссии установлено, что наиболее эффективным будет использование биогаза, получаемого от смеси куриного помета и ила сточных вод с жировыми отходами в соотношении 75% : 25%. Концентрация сероводорода в биогазе не превышала 3%, концентрация кислорода уменьшилась от 4,9% до 1,8%. Индикатор фактора pH уменьшался, когда к смеси добавлялось больше жировых отходов. При использовании только куриного помета среднее значение фактора pH менялось от 6,4 до 6,3, при использовании ила сточных вод – от 6,6 до 6,3.


2017 ◽  
Vol 5 ◽  
pp. 41-47 ◽  
Author(s):  
S. Shrestha ◽  
N.P. Chaulagain ◽  
K.R. Shrestha

Management of solid waste is one of the major challenges faced by the municipalities. Solid waste mainly comprises of organic waste. Proper management of organic waste helps minimize solid waste problem. This study was carried out to assess the production of biogas from canteen’s organic waste as a solution for management of organic waste in Solid Waste Management Technical Support Centre, Lalitpur using innovative urban biogas plant with capacity 1,275 liters for 48 days. The physicochemical parameters of canteen’s waste and bio-slurry were analyzed. Similarly, volume of biogas, volume of methane and carbon dioxide in biogas produced were measured and CO2 reduction from biogas plant was identified. The average values of physicochemical parameters of canteen’s waste lied within the optimum range for biogas production. The biogas plant produced 22.03 liters/kg of waste and 120.47 liters/day of biogas. The produced biogas contained 48.89% methane and 39.11% carbon dioxide on average. The biogas plant could reduce 3.20 tones of CO2 equivalent per annum from 262.50 kg of waste fed for 48 days. The values of nitrogen, phosphorus and potassium of bio-slurry indicated it as a better fertilizer. Shapiro-Wilk test showed that the p-value of collected data were greater than 0.05 indicating normal distribution. Linear regression between ambient temperature and biogas production showed that the p-value less than 0.05 indicating significant relationship between them (r2=0.08). The estimated return period of the invested money was 9.5 months in kerosene substitution or 9.7 months in firewood substitution or 9.5 months in LPG substitution. Similarly, the estimated average rate of return was 125.26% in kerosene substitution or 123.72% in firewood substitution or 125.01% in LPG substitution. These results indicated that biogas production using innovative urban biogas plant is better solution for organic waste management. Further extensive and large scale research need to be carried out for the optimization of the biogas plant.


Sign in / Sign up

Export Citation Format

Share Document