Crystallization of simonkolleite (Zn5Cl2(OH)8 ∙ H2O) in powder samples prepared for mineral composition analysis by quantitative X-ray diffraction (QXRD)

Nafta-Gaz ◽  
2021 ◽  
Vol 77 (5) ◽  
pp. 293-298
Author(s):  
Urszula Zagórska ◽  
◽  
Sylwia Kowalska ◽  

The analysis of mineralogical composition by quantitative X-ray diffraction (QXRD) is one of the standard research methods used in hydrocarbon exploration. In order to improve it and to obtain better results, the methodology of quantitative analysis used at Well Logging Department is being periodically (more or less) modified. After the introduction of the improvements, comparative analyses were performed on archival samples. Reflections from an unidentified phase which did not occur in the tested Rotliegend sandstone samples were noticed on X-ray diffractograms of archival samples. Reflections of a mineral called simonkolleite were identified in the X-ray diffraction database. Chemically it is a hydrated zinc chloride of the formula: Zn5Cl2(OH)8 × H2O. Analysis of the composition of samples in which simonkolleite crystallised, indicated that the mineral is being formed in the result of the slow reaction of zinc oxide with halite (NaCl) and water vapour. An attempt was made to determine the influence of the presence of this mineral on the results of the quantitative analysis of mineralogical composition. The above methodology was applied on a group of ten samples. The results of the quantitative analysis conducted for archival samples stored with added zincite standard containing simonkolleite and for new, freshly grinded (without artifact) samples were compared. The comparison of the obtained results showed a slight influence of this mineral on the quantitative composition of the remaining components. The difference between the results usually did not exceed the method error. At the same time a significant difference in the calculated content of the internal standard was noted – on average 1% less in archival than in new samples. This shows that the reaction occurring in the archival samples will affect the evaluation of the quality of the obtained quantitative analysis, at the same time excluding the possibility of determining the rock’s amorphous substance content with the internal standard method.

2015 ◽  
Vol 1087 ◽  
pp. 493-497 ◽  
Author(s):  
Duong D. Nguyen ◽  
Liam Devlin ◽  
Pramod Koshy ◽  
Charles C. Sorrell

Portland cement is one of most important construction and building materials and its properties depend strongly on the mineralogical composition. Consequently, accurate analysis of the mineralogical composition of anhydrous Portland cement is crucial for both product quality control and optimisation of performance following initial hydration. In the latter sense, analysis of the mineralogical composition of hydrated Portland cement paste is critical to understand (1) the mechanism and kinetics of hydration of unmodified pastes and those modified with additives and (2) the resultant properties of cement pastes, mortars, and concretes. Such analyses typically are undertaken by quantitative X-ray diffraction (XRD).The present work reviews current practices in quantitative XRD analysis of anhydrous and hydrated Portland cement. To this end, Part 1 of this two-part work briefly mentions the point-counting method and the Bogue calculation method. The more commonly applied internal standard method and reference intensity ratio (RIR) method are discussed in more detail.


2007 ◽  
Vol 34 ◽  
pp. 281-288 ◽  
Author(s):  
Bogdan Constantinescu ◽  
Roxana Bugoi ◽  
Emmanuel Pantos ◽  
Dragomir Popovici

Two analytical methods – 241Am-based X-Ray Fluorescence (XRF) and Synchrotron Radiation X-ray Diffraction (SR-XRD) – were used to investigate the elemental and mineralogical composition of pigments which decorate some Cucuteni Neolithic ceramic sherds. Local hematite and local calcite were the main components for red and white pigments, respectively. For black pigments, iron oxides (e.g. magnetite) were used. They were often mixed with manganese oxides (e.g. jacobsite), which originated from Iacobeni manganese minerals deposits on the Bistrita River. Taking into account the results of the experiments, several conclusions regarding manufacturing procedures employed, and potential trade routes during the Neolithic were drawn.


1997 ◽  
Vol 07 (03n04) ◽  
pp. 157-169 ◽  
Author(s):  
K. SERA ◽  
S. FUTATSUGAWA ◽  
S. HATAKEYAMA ◽  
Y. SAITOH ◽  
K. MATSUDA

A standard-free method developed by ourselves has been applied to bio-medical samples of less than 1 mg or less than 1 μl, to which an ordinary internal standard method can not be accurately applied. As the result, correct values of potassium concentration in NIST-Bovine liver samples of nearly 0.5 mg were obtained. Furthermore, the standard-free method has been applied to small quantity of serum and whole-blood samples, and satisfactory results were obtained. For samples which easily peel off from a backing film, such as serum and whole blood, a carbon tape with an adhesive agent was also used as a backing film, and it is found that this method is also applicable. Moreover, the standard-free method was confirmed to be effective for a case where a specially designed x-ray absorber is used.


1988 ◽  
Vol 3 (2) ◽  
pp. 74-77 ◽  
Author(s):  
Camden R. Hubbard ◽  
Robert L. Snyder

AbstractThe Reference Intensity Ratio (RIR) is a general, instrument-independent constant for use in quantitative phase analysis by the X-ray powder diffraction internal standard method. When the reference standard is corundum, RIR is known as I/Ic; These constants are collected in the Powder Diffraction File (1987), can be calculated, and can be measured. Recommended methods for accurate measurement of RIR constants are presented, and methods of using these constants for quantitative analysis are discussed. The numerous, complex constants in Copeland and Bragg's method introduced to account for superimposed lines can be simply expressed in terms of RIR constants and relative intensities. This formalism also permits introduction of constraints and supplemental equations based on elemental analysis.


1992 ◽  
Vol 7 (4) ◽  
pp. 186-193 ◽  
Author(s):  
Robert L. Snyder

AbstractEach of the RIR based methods for carrying out quantitative X-ray powder diffraction analysis are described and a consistent set of notation is developed. The so called “standardless” analysis procedures are shown to be a special case of the internal-standard method of analysis where the normalizing assumption is used. All analytical methods, other than the Rietveld whole pattern matching procedure, require the use of explicitly measured standards, typically in the form of RIR values. However, if only semi-quantitative results can be tolerated, the standards may be obtained by using published RIR and relative intensity values. The exciting new techniques of whole pattern fitting and Rietveld constrained quantitative analysis are also described in RIR notation and shown also to be forms of the internal-standard method with the normalization assumption. The quantitative results obtained from Rietveld quantitative analysis are derived from computed standards in the form of computed, normalized, RIRN values. The normalization assumption in Rietveld analysis allows the exclusive use of computed standards and comes as close to a “standardless” analysis as one can achieve: relying on the absence of amorphous material and on the validity of the structural models. Relationships are given for obtaining quantitative analysis from these RIRN values obtainable from the least-squares scale factors.


2015 ◽  
Vol 1087 ◽  
pp. 498-503 ◽  
Author(s):  
Duong D. Nguyen ◽  
Liam Devlin ◽  
Pramod Koshy ◽  
Charles C. Sorrell

The present work reviews current practices in quantitative XRD analysis of anhydrous and hydrated Portland cement. While Part 1 of this two-part work reviews the conventional internal standard method and the reference intensity ratio (RIR) method, Part 2 reviews the more commonly used computer-based methods, which include the Rietveld method (with or without internal standard) and the G-factor method (with external standard). Further, some critical general aspects of the experimental procedures that affect the accuracy of the analysis are discussed.


2002 ◽  
Vol 35 (6) ◽  
pp. 744-749 ◽  
Author(s):  
Steve J. Chipera ◽  
David L. Bish

FULLPATis a quantitative X-ray diffraction methodology that merges the advantages of existing full-pattern fitting methods with the traditional reference intensity ratio (RIR) method. Like the Rietveld quantitative analysis method, it uses complete diffraction patterns, including the background. However,FULLPATcan explicitly analyze all phases in a sample, including partially ordered or amorphous phases such as glasses, clay minerals, or polymers. Addition of an internal standard to both library standards and unknown samples eliminates instrumental and matrix effects and allows unconstrained analyses to be conducted by direct fitting of library standard patterns to each phase in the sample. Standard patterns may include data for any solid material including glasses, and calculated patterns may also be used. A combination of standard patterns is fitted to observed patterns using least-squares minimization, thereby reducing user intervention and bias.FULLPAThas been coded into MicrosoftEXCELusing standard spreadsheet functions.


1981 ◽  
Vol 25 ◽  
pp. 379-382
Author(s):  
H. S. Kim ◽  
C. I. Cohen

AbstractAn X-ray diffraction (XRD) technique is employed to determine the presence or absence of crystalline phases in glass batch and to determine its homogeneity qualitatively and quantitatively.Sample preparation problems are discussed, and promising techniques for sample preparation are presented. Qualitative batch homogeneity determination is accomplished by comparing the integrated intensity of a particular reflection of the reference sample to that of the unknown sample. Quantitative batch determination is accomplished by using the internal standard method. Three replicated data sets indicate that the standard deviation of kaolinite and colemanite are higher than those of quartz and calcite. However, the overall data from the quantitative analyses lie within an acceptable range of precision and accuracy.


Sign in / Sign up

Export Citation Format

Share Document