scholarly journals Verification of a simulation model to predict the transmission behaviour of hydrostatic bearing on machine tools

Author(s):  
Jörg Edler ◽  
Matthias Steffan
Author(s):  
Xiaodong Yu ◽  
Weicheng Gao ◽  
Guangpeng Wu ◽  
Wenkai Zhou ◽  
Hongwei Bi ◽  
...  

Background: As the basis of mechanical manufacturing, large-scale machine tools are developing in the direction of improving processing accuracy, load-bearing capacity and rigidity. Hydrostatic thrust bearing, hydrostatic guide and hydrostatic ram are important components of large machine tools, with the continuous improvement of product accuracy requirements, the research on hydrostatic thrust bearing, hydrostatic guide and hydrostatic ram are more important. Objective: This paper introduces the current research on hydrostatic thrust bearing, hydrostatic guide and hydrostatic ram to express the importance of hydrostatic ram in improving the machining accuracy of machine tools. The study aims to lay a foundation for research and development of hydrostatic ram in the future. Methods: Firstly, the hydrostatic bearing technology is introduced. Secondly, the research status of hydrostatic thrust bearing, hydrostatic guide and hydrostatic ram are introduced to provide theoretical basis for improving the processing performance of rest ram. Result: Deformation compensation and thermal deformation compensation of hydrostatic ram have been studied more. Most of study focus on the accuracy of hydrostatic ram, but less on the bearing performance of hydrostatic ram. Conclusion: Breakthroughs have been made in the research on precision control and structural form of the hydrostatic bearing at home and abroad. Most scholars take the ram of Computer Numerically Control (CNC) boring and milling machines as the research object, but there are less research on the ram of vertical lathes. Therefore, the academic circle should pay more attention to the bearing performance of the hydrostatic ram of vertical lathes.


2012 ◽  
Vol 622-623 ◽  
pp. 489-493
Author(s):  
Iskander Beisembetov ◽  
Sabyi Ussupov ◽  
Bakhyt Absadykov ◽  
Beken Arymbekov ◽  
Birzhan Bektibay

Development relevance to improve the operational parameters of the support units of machine tools in their design elements is introduced that increase the rigidity of the components, their carrying capacity, damp occurring vibrations in the process, the coefficient of performance (COP), smoothness of motion, positioning accuracy, reducing the wear of their working surfaces and maintain the original accuracy. A number of engineering development [1], [2], aimed at improving the above characteristics of the machine by changing and improving design of reference nodes used in these rails rolling bearings, aerostatic and hydrostatic guides, as well as the use of automatic control systems of its basic parameters, determine its quality. However, in some operating conditions in which errors occur, mainly due to the instability of oil-film thickness (gap) between the mobile and immobile elements of the hydrostatic bearing. For high accuracy requirements it will negatively affect the quality of machined parts and equipment performance. On this basis, it becomes apparent urgency of the problem of automatic stabilization of oil-film thickness (gap) in the IR. To ensure high precision equipment to improve power system hydrostatic bearing units of machine tools. This, in turn, creates the prerequisite for the development of stabilization systems of the gap in the hydrostatic bearing, with the help of which the thickness of oil layer in them would be kept constant even with significant dynamic load on the support.


2013 ◽  
Vol 274 ◽  
pp. 124-127
Author(s):  
Yan Qin Zhang ◽  
Rui Li ◽  
Chun Xi Dai ◽  
Jun Peng Shao ◽  
Xiao Dong Yang ◽  
...  

With heavy hydrostatic bearing as the research object, establish oil film viscosity-temperature equation. Adopt finite volume method, respectively calculates the oil film temperature field under different rotate velocity in Invariant viscosity and variable viscosity, revealing the oil film temperature arise influence rule of hydrostatic bearing on the viscosity and rotate velocity. The results show that the viscosity and rotate velocity have a great influence on the hydrostatic bearing oil film temperature rise, but the effect regularity varied. The calculated results that provide a theoretical basis for the hydrostatic bearing structure design and bearing deformation calculation, and have very important significance on improve the reliability and precision of the whole machine tools.


1966 ◽  
Vol 8 (2) ◽  
pp. 152-161 ◽  
Author(s):  
G. P. Kearney

Master and slave systems utilize two types of hydrostatic bearing in order to provide high load capacity in conjunction with non-redundant location by rigid-film hydrostatic bearings. Master bearings are controlled both by applied thrust and by their clearance, and they also control the thrust in the slave bearings which act independently of their own clearances. A journal bearing is used to illustrate analysis of bearing systems, redundant locations, and master and slave systems. A general analysis of master and slave systems is given and a design procedure, advantages, fields of application, and design calculations for individual bearings are outlined in the text and appendixes.


2020 ◽  
Vol 14 (1) ◽  
pp. 73-79
Author(s):  
Hiroshi Sawano ◽  

Hydrostatic bearings are important elements that directly affect machining accuracy in machine tools. Although hydrostatic bearings using water can reduce environmental influence compared with those using oil, they have low rigidity and damping properties. By investigating the properties of water used for working fluid of hydrostatic bearings, there is a possibility that the characteristics of hydrostatic bearings using water can be improved. Therefore, in this study, the relationship between the properties of water used as a working fluid of hydrostatic bearings and the characteristics of bearings was investigated. For this purpose, a hydrostatic bearing characteristics evaluation system using water was constructed. The characteristics of hydrostatic bearings were examined by varying the components and temperature of water. The experimental results show that the composition and temperature of working water affect the performance of water hydrostatic bearing.


2015 ◽  
Vol 764-765 ◽  
pp. 398-402
Author(s):  
Gyung Tae Bae ◽  
Bo Sung Kim ◽  
Ji Hun Pak ◽  
Hong Man Moon ◽  
Jung Pil Noh ◽  
...  

Recently, it is essential to enhance the value of the products to make them more competitive. Therefore, the technical level of the high-precision products is required. Thermal deformation error, which accounts for a significant effect of processing accuracy of machine tools. In order to reduce thermal deformation error such studies the thermal characteristics of the Hydrostatic spindle is required. In this study, we could confirm the reliability of the analysis by assessing the thermal characteristics through measurement of the grinding machine temperature and thermal structural analysis. The temperature of the front bearing 10 °C or more higher than the temperature of the rear bearing, thermal deformation of the spindle, was found to be dependent on the temperature of the hydrostatic bearing. And could identify the thermal characteristics of the hydrostatic spindle.


2012 ◽  
Vol 516 ◽  
pp. 463-468 ◽  
Author(s):  
Hiroshi Mizumoto ◽  
Taiki Sunahara ◽  
Yoshito Yabuta ◽  
Shiro Arii ◽  
S. Fujii ◽  
...  

A novel diaphragm-control restrictor (DCR) is proposed for improving the performance of the hydrostatic-bearing spindle used in machine tools. The unique function of the proposed DCR is the wide adjustability of its restrictor characteristic. A two-step restriction system is adopted for the DCR; a spool restrictor is used as the first step restrictor. By changing the restrictor resistance of the spool restrictor, the effect of the active control in the DCR, the second step restrictor, can be altered. The proposed DCR is incorporated into a hydrostatic bearing supporting a precision spindle, and the performance of the bearing is analyzed. Numerical and experimental analyses show that the stiffness of the hydrostatic bearing with the proposed DCR can be five times as large as a conventional hydrostatic bearing of the same dimensions. Analysis of the dynamic compliance shows that the effect of the active control can be observed up to 20Hz. These results show that the proposed DCR is useful for improving the performance of the hydrostatic-bearing spindle in precision applications.


Author(s):  
Yohichi Nakao ◽  
Toshiaki Sano ◽  
Midori Nagashima ◽  
Kenji Suzuki

The water driven stage that is developed for ultra-precision machine tools is presented. The stage is designed for the diamond turning of small precise parts, such as various small lenses or mirrors. The moving table of the water driven stage is supported by water hydrostatic bearings. The stage is driven by the water hydraulic piston-cylinder mechanism that is designed inside the table. A feature of the stage is that the driving force by the piston-cylinder mechanism acts on the center of gravity of the moving table, minimizing undesirable pitching and yawing motions. In order to investigate the characteristics of the stage, a mathematical model of the water driven stage is derived. Performances of the water driven stage are examined through experiments and calculations. The present study verifies that the feed motion needed for the diamond turning operations can be obtained by supplying few flow rate of water, several tens milliliters per minutes. Stiffness of the water hydrostatic bearing is also experimentally investigated. The result shows that stiffness is approximately 330 N/μm if the supply pressure was 0.5 MPa.


Author(s):  
C. W. McCutchen ◽  
Lois W. Tice

Ultramicrotomists live in a state of guerilla warfare with chatter. This situation is likely to be permanent. We can infer this from the history of machine tools. If set the wrong way for the particular combination of cutting tool and material, most if not all machine tools will chatter.In more than 100 years since machine tools became common, no one has evolved a practical recipe that guarantees avoiding chatter. Rather than follow some single very conservative rule to avoid chatter in all cases, machinists detect it when it happens, and change conditions until it stops. This is possible because they have no trouble telling when their cutting tool is chattering. They can see chatter marks, and they can also hear a sometimes deafening noise.


Sign in / Sign up

Export Citation Format

Share Document