Temperature Field of Hydrostatic Supporting Disk in Different Viscosity and Rotational Speed

2013 ◽  
Vol 274 ◽  
pp. 124-127
Author(s):  
Yan Qin Zhang ◽  
Rui Li ◽  
Chun Xi Dai ◽  
Jun Peng Shao ◽  
Xiao Dong Yang ◽  
...  

With heavy hydrostatic bearing as the research object, establish oil film viscosity-temperature equation. Adopt finite volume method, respectively calculates the oil film temperature field under different rotate velocity in Invariant viscosity and variable viscosity, revealing the oil film temperature arise influence rule of hydrostatic bearing on the viscosity and rotate velocity. The results show that the viscosity and rotate velocity have a great influence on the hydrostatic bearing oil film temperature rise, but the effect regularity varied. The calculated results that provide a theoretical basis for the hydrostatic bearing structure design and bearing deformation calculation, and have very important significance on improve the reliability and precision of the whole machine tools.

2019 ◽  
Vol 71 (1) ◽  
pp. 126-132
Author(s):  
Yanqin Zhang ◽  
Pengrui Kong ◽  
Yanan Feng ◽  
Lili Guo

Purpose To investigate the effects of hot oil carrying (HOC), the purpose of this paper is to present a new calculation method of oil film temperature which takes the effects into account and defines the factor of HOC. Design/methodology/approach Based on finite volume method, the paper studied the temperature characteristics in high speed and the condition of variable viscosity from the temperature field and flow field of the film, and the thermal rule of HOC is revealed. The theoretical values are in good agreement with the experimental results. Findings The results show that, for this structure of hydrostatic bearing, the phenomenon of HOC does not occur until the work speed is more than 10 r/min under any load condition. And it always happens in the total range of load, from 0 to 320 kN, when the speed is over 60 r/min. Moreover, the film temperature increases sharply, when the phenomenon happens in high speed, and the influence of the speed is greater than the effect of load on the temperature rise. Originality/value The results would help to increase the speed of CNC machine tools and the design on structure of the bearing in engineering practice.


2011 ◽  
Vol 239-242 ◽  
pp. 1418-1421 ◽  
Author(s):  
Yan Qin Zhang ◽  
Xiao Qiu Xu ◽  
Xiao Dong Yang ◽  
Hong Mei Li ◽  
Hui Jiang ◽  
...  

According to the problem of the influence of oil film thickness on temperature rise for heavy hydrostatic thrust bearing during operation, build viscosity-temperature equation of lubricating oil film and mathematics model of oil film temperature rise of heavy hydrostatic bearing with multiple oil pads, simulate the temperature field of hydrostatic bearing with sector cavity under various oil film thickness using FVM(finite volume method), and reveal the influence law of oil film thickness of temperature rise for hydrostatic bearing. The results show that temperature distribution of hydrostatic bearing is much the same under various oil film thicknesses, but the influence of oil film thickness of temperature rise for hydrostatic bearing is greater. The results of numerical calculations actually response flow state inside hydrostatic bearing ,offer theoretical foundation for the design of hydrostatic bearing in engineering practice, and have important significance in improving operation stability of NC machine.


2012 ◽  
Vol 622-623 ◽  
pp. 489-493
Author(s):  
Iskander Beisembetov ◽  
Sabyi Ussupov ◽  
Bakhyt Absadykov ◽  
Beken Arymbekov ◽  
Birzhan Bektibay

Development relevance to improve the operational parameters of the support units of machine tools in their design elements is introduced that increase the rigidity of the components, their carrying capacity, damp occurring vibrations in the process, the coefficient of performance (COP), smoothness of motion, positioning accuracy, reducing the wear of their working surfaces and maintain the original accuracy. A number of engineering development [1], [2], aimed at improving the above characteristics of the machine by changing and improving design of reference nodes used in these rails rolling bearings, aerostatic and hydrostatic guides, as well as the use of automatic control systems of its basic parameters, determine its quality. However, in some operating conditions in which errors occur, mainly due to the instability of oil-film thickness (gap) between the mobile and immobile elements of the hydrostatic bearing. For high accuracy requirements it will negatively affect the quality of machined parts and equipment performance. On this basis, it becomes apparent urgency of the problem of automatic stabilization of oil-film thickness (gap) in the IR. To ensure high precision equipment to improve power system hydrostatic bearing units of machine tools. This, in turn, creates the prerequisite for the development of stabilization systems of the gap in the hydrostatic bearing, with the help of which the thickness of oil layer in them would be kept constant even with significant dynamic load on the support.


2011 ◽  
Vol 121-126 ◽  
pp. 4706-4710
Author(s):  
Yong Hai Li ◽  
Xiu Li Meng ◽  
Xiao Dong Yu ◽  
Bo Wu ◽  
Chun Li Gao ◽  
...  

In order to solve the thermal deformation of the hydrostatic center frame in the heavy type horizontal lathe, a simulation research concerning temperature field of hydrostatic center frame is described. The Finite Volume Method of CFX has been used to compute three-dimensional temperature field of gap fluid between workpiece and bearing pillow. This research theoretically analyzes the influence of angular velocity on the bearing temperature performance according to lubricating theory and computational fluid dynamics, and it has revealed its temperature distribution law of gap oil film. Results indicate that an improved characteristic will be affected by angular velocity easily, and oil cavity temperature increases by gradually with angular velocity enhancing. Through this method, the safety of a hydrostatic center frame can be forecasted, and the optimal design of such products can be achieved, so it can provide reasonable data for design, lubrication, experience and thermal deformation computation for hydrostatic center frame in the heavy type horizontal lathe.


2013 ◽  
Vol 274 ◽  
pp. 274-277 ◽  
Author(s):  
Xiao Qiu Xu ◽  
Jun Peng Shao ◽  
Xiao Dong Yang ◽  
Yan Qin Zhang ◽  
Xiao Dong Yu ◽  
...  

Taking multi-oil-cavity and multi-oil-pad hydrostatic bearings as studied projects, firstly make brief instructions for structure characteristics and working principal of hydraulic system; Then, build three-dimensional models of multi-oil-cavity and multi-oil-pad hydrostatic bearings respectively. Adopting finite volume method, oil film mesh is generated by universal finite analysis software CFD; then, carry on numerical simulations for pressure distribution and temperature distribution of the two studied hydrostatic thrust bearing under various viscosity, and make comparative analysis for difference between the two studied hydrostatic thrust bearing. Based on the analysis of numerical simulation results, the conclusions whether oil-return groove is set for hydrostatic bearing could be received. Simulation results reveal truly the influence of setting oil-return groove or not on hydrostatic thrust bearing, and improve structure design for hydrostatic thrust bearing.


2021 ◽  
Author(s):  
Dongju Chen ◽  
Xuan Zhang

Abstract The hydrostatic bearing oil film plays a key role in supporting and lubricating. As the speed increases, the temperature of the lubricating oil increases and the viscosity decreases. As a result, the bearing capacity of the oil film is reduced, which affects the motion accuracy of the hydrostatic bearing. In this paper, the simulation and analysis of the temperature rise of the hydrostatic bearing oil film under the constant viscosity and the viscosity-temperature effect are performed respectively. Then, based on the fluid-heat-solid coupling analysis theory, the temperature field of the hydrostatic bearing and the thermal deformation of the spindle shaft with and without the viscosity-temperature effect are analyzed separately. The temperature field of the shaft and the thermal deformation of the spindle shaft are analyzed separately. Finally, the bearing temperature and shaft deformation are compared with the experimental values for error analysis. It is found that the error rate is smaller when the viscosity-temperature effect is considered. Considering the viscosity-temperature effect, the maximum error rates of the temperature of the radial and thrust bearing bushes are 11.05% and 7.82%, and the maximum error rates of the thermal deformation of the spindle shaft in the axial and radial directions are 12.03% and 18.57%.


2013 ◽  
Vol 274 ◽  
pp. 132-135 ◽  
Author(s):  
Yan Qin Zhang ◽  
Rui Li ◽  
Chun Xi Dai ◽  
Jun Peng Shao ◽  
Xiao Dong Yang ◽  
...  

With heavy NC machine tool is widely used in many oil pad round guide hydrostatic bearing as the research object, in the under condition of variable viscosity, establish oil film viscosity-temperature equation. Adopt finite volume method, simulation the hydrostatic bearing internal fluid temperature field under different flow rates on the speed of 6R / min. Numerical simulation hydrostatic thrust bearing oil film temperature field, can find a general high temperature region, and then take effective control temperature. It can achieve the hydrostatic thrust bearing oil film temperature field prediction for engineering practical oil chamber structure, offer the theoretical foundation for optimization design.


2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096505
Author(s):  
Jiafu Ruan ◽  
Xigui Wang ◽  
ShuE Ji ◽  
Yongmei Wang ◽  
Siyuan An

A radial thrust hydrodynamic sliding bearing (RTHSB) with special shaped cavity had been designed. Taking the instantaneous temperature rise characteristics of RTHSB as an analysis object, considering the influence of inlet lubricating oil velocity and transmission shaft speed, a dynamic simulation method of variable viscosity temperature field is proposed, and the mathematical model of instantaneous temperature rise of time-varying oil film is constructed. The correlation equation between instantaneous temperature rise and oil film variable viscosity is analyzed, the lubricating performance of a special-shaped cavity with variable thickness of the oil film considering real-time full operating conditions is revealed, and the alternating transient laws of oil film thickness with variable viscosity and its instantaneous temperature rise for no-load, heavy-load, and different rotating speeds are studied. It is obtained that the higher temperature area of profiled shaped cavity on reverse flow side extends to oil seal side with increase of rotating speed. The dynamic simulation of variable viscosity of RTHSB with different film thickness is simulated by using FLUENT software and the trend of transient film temperature field distribution of in special-shaped cavity is evaluated. The rationality of the mechanism analysis and numerical simulation results in this paper has been verified.


Author(s):  
Yan-Qin Zhang ◽  
Ji-Chang Sun ◽  
Peng-Rui Kong ◽  
Xiang-Bin Kong ◽  
Xiao-Dong Yu

In order to improve the lubrication performance of the double-rectangular cavity hydrostatic thrust bearing, this paper selects the temperature rise characteristics of hydrostatic bearing as the research object under the conditions of changing oil film thickness and different working conditions. Using the dynamic mesh method with variable viscosity dynamic simulation, the changing temperature rise curves under different inlet flow velocities and rotating speeds are obtained. This paper obtains the changing laws of oil film thickness and temperature under the hydrostatic bearing running in no-load, load 2.5 t, load 10 t and the rotating speeds of 40 r/min, 60 r/min and 80 r/min. Under the low rotating speed, the high temperature region in the oil cavity mainly concentrates on the counter flow side. With the increase of working speed, the high temperature region on the counter flow side expands to the oil seal side obviously. When the oil film thickness was in the range of 0.04 mm to 0.07 mm, the temperature of oil seal edge increased with the increase of the inlet flow velocity. Using the FLUENT software, the variable viscosity simulation of hydrostatic bearing is carried out under different oil film thickness, and the temperature distribution of oil cavity is obtained. Finally, the correctness of theoretical analysis and simulation are verified by conducting experiment.


Sign in / Sign up

Export Citation Format

Share Document