Aspects of the Acceptance of Mass Cultures in Japanese Communal Societies as Reflected in the “Modern” Magazines in the 1930’s

2021 ◽  
Vol 91 ◽  
pp. 343-365
Author(s):  
You-Lee Jang
Keyword(s):  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaobin Wen ◽  
Aoqi Zhang ◽  
Xiaoyan Zhu ◽  
Lin Liang ◽  
Yan Huo ◽  
...  

Abstract Background Predatory flagellates and ciliates are two common bio-contaminants which frequently cause biomass losses in Chlorella mass culture. Efficient and targeted ways are required to control these contaminations in Chlorella mass cultivation aiming for biofuel production especially. Results Five surfactants were tested for its ability to control bio-contaminations in Chlorella culture. All five surfactants were able to eliminate the contaminants at a proper concentration. Particularly the minimal effective concentrations of sodium dodecyl benzene sulfonate (SDBS) to completely eliminate Poterioochromonas sp. and Hemiurosomoida sp. were 8 and 10 mg L−1, respectively, yet the photosynthesis and viability of Chlorella was not significantly affected. These results were further validated in Chlorella mass cultures in 5, 20, and 200 m2 raceway ponds. Conclusions A chemical method using 10 mg L−1 SDBS as pesticide to control predatory flagellate or ciliate contamination in Chlorella mass culture was proposed. The method helps for a sustained microalgae biomass production and utilization, especially for biofuel production.


1964 ◽  
Vol 33 (1-2) ◽  
pp. 99-104 ◽  
Author(s):  
O.H. Scherbaum ◽  
T.L. Jahn
Keyword(s):  

1963 ◽  
Vol 11 (5) ◽  
pp. 446-449 ◽  
Author(s):  
P. J. Hannan ◽  
Constance Patouillet
Keyword(s):  

1989 ◽  
pp. 127-134
Author(s):  
Carla Bonacina ◽  
Giuliano Bonomi ◽  
Carlo Monti

Development ◽  
1959 ◽  
Vol 7 (2) ◽  
pp. 241-256
Author(s):  
Norman E. Williams ◽  
Otto H. Scherbaum

Synchronous cell-division has been induced in mass cultures of the small ciliated protozoan Tetrahymena pyriformis (Scherbaum & Zeuthen, 1954). While it is known that cells grow in a characteristic way during the synchronizing treatment the effect on the morphogenetic events associated with the cell cycle is not clear. Studies in ciliate morphogenesis generally have established the central position of the ciliary basal body, or kinetosome, in developmental processes. The kinetosomes are believed to be self-duplicating structures, the kinetosomal population of a daughter cell arising directly by kinetosomal reproduction in the parent cell. The species-specific pattern of the ectoplasmic cortex is largely a matter of the distribution of kinetosomes. Further, the kinetosomes appear to function either as building blocks or ‘local organizers’ in most, if not all, structural syntheses occurring in the cortex, i.e. in the production cilia, cirri, membranelles, trichocysts, and other ciliate structures (see Weisz, 1954).


Sign in / Sign up

Export Citation Format

Share Document