scholarly journals Note on the Intuitionistic Logic of False Belief

Author(s):  
Tomasz Witczak

In this paper we analyse logic of false belief in the intuitionistic setting. This logic, studied in its classical version by Steinsvold, Fan, Gilbert and Venturi, describes the following situation: a formula $\varphi$ is not satisfied in a given world, but we still believe in it (or we think that it should be accepted). Another interpretations are also possible: e.g. that we do not accept $\varphi$ but it is imposed on us by a kind of council or advisory board. From the mathematical point of view, the idea is expressed by an adequate form of modal operator $\mathsf{W}$ which is interpreted in relational frames with neighborhoods. We discuss monotonicity of forcing, soundness, completeness and several other issues. We present also some simple systems in which confirmation of previously accepted formula is modelled.

2017 ◽  
Vol 46 (3/4) ◽  
Author(s):  
Krystyna Mruczek-Nasieniewska ◽  
Marek Nasieniewski

In [1] J.-Y. Bèziau formulated a logic called Z. Bèziau’s idea was generalized independently in [6] and [7]. A family of logics to which Z belongs is denoted in [7] by K. In particular; it has been shown in [6] and [7] that there is a correspondence between normal modal logics and logics from the class K. Similar; but only partial results has been obtained also for regular logics (see [8] and [9]). In (Došen; [2]) a logic N has been investigated in the language with negation; implication; conjunction and disjunction by axioms of positive intuitionistic logic; the right-to-left part of the second de Morgan law; and the rules of modus ponens and contraposition. From the semantical point of view the negation used by Došen is the modal operator of impossibility. It is known this operator is a characteristic of the modal interpretation of intuitionistic negation (see [3; p. 300]). In the present paper we consider an extension of N denoted by N+. We will prove that every extension of N+ that is closed under the same rules as N+; corresponds to a regular logic being an extension of the regular deontic logic D21 (see [4] and [13]). The proved correspondence allows to obtain from soundnesscompleteness result for any given regular logic containing D2, similar adequacy theorem for the respective extension of the logic N+.


Author(s):  
Mario Spagnuolo ◽  
Antonio M. Cazzani

AbstractIn this work, an extension of the strain energy for fibrous metamaterials composed of two families of parallel fibers lying on parallel planes and joined by connective elements is proposed. The suggested extension concerns the possibility that the constituent fibers come into contact and eventually scroll one with respect to the other with consequent dissipation due to friction. The fibers interact with each other in at least three different ways: indirectly, through microstructural connections that could allow a relative sliding between the two families of fibers; directly, as the fibers of a family can touch each other and can scroll introducing dissipation. From a mathematical point of view, these effects are modeled first by introducing two placement fields for the two fiber families and adding a coupling term to the strain energy and secondly by adding two other terms that take into account the interdistance between the parallel fibers and the Rayleigh dissipation potential (to account for friction).


1988 ◽  
Vol 53 (4) ◽  
pp. 1177-1187
Author(s):  
W. A. MacCaull

Using formally intuitionistic logic coupled with infinitary logic and the completeness theorem for coherent logic, we establish the validity, in Grothendieck toposes, of a number of well-known, classically valid theorems about fields and ordered fields. Classically, these theorems have proofs by contradiction and most involve higher order notions. Here, the theorems are each given a first-order formulation, and this form of the theorem is then deduced using coherent or formally intuitionistic logic. This immediately implies their validity in arbitrary Grothendieck toposes. The main idea throughout is to use coherent theories and, whenever possible, find coherent formulations of formulas which then allow us to call upon the completeness theorem of coherent logic. In one place, the positive model-completeness of the relevant theory is used to find the necessary coherent formulas.The theorems here deal with polynomials or rational functions (in s indeterminates) over fields. A polynomial over a field can, of course, be represented by a finite string of field elements, and a rational function can be represented by a pair of strings of field elements. We chose the approach whereby results on polynomial rings are reduced to results about the base field, because the theory of polynomial rings in s indeterminates over fields, although coherent, is less desirable from a model-theoretic point of view. Ultimately we are interested in the models.This research was originally motivated by the works of Saracino and Weispfenning [SW], van den Dries [Dr], and Bunge [Bu], each of whom generalized some theorems from algebraic geometry or ordered fields to (commutative, von Neumann) regular rings (with unity).


Filomat ◽  
2013 ◽  
Vol 27 (4) ◽  
pp. 515-528 ◽  
Author(s):  
Miodrag Mateljevic ◽  
Marek Svetlik ◽  
Miloljub Albijanic ◽  
Nebojsa Savic

In this paper we give a generalization of the Lagrange mean value theorem via lower and upper derivative, as well as appropriate criteria of monotonicity and convexity for arbitrary function f : (a, b) ( R. Some applications to the neoclassical economic growth model are given (from mathematical point of view).


2020 ◽  
pp. 622-675
Author(s):  
Giuseppe Mussardo

Chapter 17 discusses the S-matrix theory of two-dimensional integrable models. From a mathematical point of view, the two-dimensional nature of the systems and their integrability are the crucial features that lead to important simplifications of the formalism and its successful application. This chapter deals with the analytic theory of the S-matrix of the integrable models. A particular emphasis is put on the dynamical principle of bootstrap, which gives rise to a recursive structure of the amplitudes. It also covers several dynamical quantities, such as mass ratios or three-coupling constants, which have an elegant mathematic formulation that is also of easy geometrical interpretation.


1933 ◽  
Vol 17 (226) ◽  
pp. 296-297
Author(s):  
S.T Shovelton

The game of Banker’s Clock provides an interesting question in mathematical probability In this game the banker turns up in sequence the first twelve cards of a well-shuffled ordinary pack of 52 cards. He backs himself to turn up at least one card of which the face value corresponds to its position in the sequence, an Ace ranking as one, a Jack as eleven and a Queen as twelve. The interest in the question from the mathematical point of view is in finding the probability that the event will happen.


Author(s):  
Walter Carnielli ◽  
Abilio Rodrigues

Abstract From the technical point of view, philosophically neutral, the duality between a paraconsistent and a paracomplete logic (for example intuitionistic logic) lies in the fact that explosion does not hold in the former and excluded middle does not hold in the latter. From the point of view of the motivations for rejecting explosion and excluded middle, this duality can be interpreted either ontologically or epistemically. An ontological interpretation of intuitionistic logic is Brouwer’s idealism; of paraconsistency is dialetheism. The epistemic interpretation of intuitionistic logic is in terms of preservation of constructive proof; of paraconsistency is in terms of preservation of evidence. In this paper, we explain and defend the epistemic approach to paraconsistency. We argue that it is more plausible than dialetheism and allows a peaceful and fruitful coexistence with classical logic.


Author(s):  
Xiaoqing Jin ◽  
Leon M. Keer ◽  
Qian Wang

The discrete convolution based Fast Fourier Transform algorithm (DC-FFT) has been successfully applied in numerical simulation of contact problems. The algorithm is revisited from a mathematical point of view, equivalent to a Toeplitz matrix multiplied by a vector. The nature of the convolution property permits one to implement the algorithm with fewer constraints in choosing the computational domains. This advantageous feature is explored in the present work, and is expected to be beneficial to many tribological studies.


Sign in / Sign up

Export Citation Format

Share Document