On epistemic and ontological interpretations of intuitionistic and paraconsistent paradigms

Author(s):  
Walter Carnielli ◽  
Abilio Rodrigues

Abstract From the technical point of view, philosophically neutral, the duality between a paraconsistent and a paracomplete logic (for example intuitionistic logic) lies in the fact that explosion does not hold in the former and excluded middle does not hold in the latter. From the point of view of the motivations for rejecting explosion and excluded middle, this duality can be interpreted either ontologically or epistemically. An ontological interpretation of intuitionistic logic is Brouwer’s idealism; of paraconsistency is dialetheism. The epistemic interpretation of intuitionistic logic is in terms of preservation of constructive proof; of paraconsistency is in terms of preservation of evidence. In this paper, we explain and defend the epistemic approach to paraconsistency. We argue that it is more plausible than dialetheism and allows a peaceful and fruitful coexistence with classical logic.

Author(s):  
Peter Pagin

The law of excluded middle (LEM) says that every sentence of the form A∨¬A (‘A or not A’) is logically true. This law is accepted in classical logic, but not in intuitionistic logic. The reason for this difference over logical validity is a deeper difference about truth and meaning. In classical logic, the meanings of the logical connectives are explained by means of the truth tables, and these explanations justify LEM. However, the truth table explanations involve acceptance of the principle of bivalence, that is, the principle that every sentence is either true or false. The intuitionist does not accept bivalence, at least not in mathematics. The reason is the view that mathematical sentences are made true and false by proofs which mathematicians construct. On this view, bivalence can be assumed only if we have a guarantee that for each mathematical sentence, either there is a proof of the truth of the sentence, or a proof of its falsity. But we have no such guarantee. Therefore bivalence is not intuitionistically acceptable, and then neither is LEM. A realist about mathematics thinks that if a mathematical sentence is true, then it is rendered true by the obtaining of some particular state of affairs, whether or not we can know about it, and if that state of affairs does not obtain, then the sentence is false. The realist further thinks that mathematical reality is fully determinate, in that every mathematical state of affairs determinately either obtains or does not obtain. As a result, the principle of bivalence is taken to hold for mathematical sentences. The intuitionist is usually an antirealist about mathematics, rejecting the idea of a fully determinate, mind-independent mathematical reality. The intuitionist’s view about the truth-conditions of mathematical sentences is not obviously incompatible with realism about mathematical states of affairs. According to Michael Dummett, however, the view about truth-conditions implies antirealism. In Dummett’s view, a conflict over realism is fundamentally a conflict about what makes sentences true, and therefore about semantics, for there is no further question about, for example, the existence of a mathematical reality than as a truth ground for mathematical sentences. In this vein Dummett has proposed to take acceptance of bivalence as actually defining a realist position. If this is right, then both the choice between classical and intuitionistic logic and questions of realism are fundamentally questions of semantics, for whether or not bivalence holds depends on the proper semantics. The question of the proper semantics, in turn, belongs to the theory of meaning. Within the theory of meaning Dummett has laid down general principles, from which he argues that meaning cannot in general consist in bivalent truth-conditions. The principles concern the need for, and the possibility of, manifesting one’s knowledge of meaning to other speakers, and the nature of such manifestations. If Dummett’s argument is sound, then bivalence cannot be justified directly from semantics, and may not be justifiable at all.


Author(s):  
Pablo M. Jacovkis

We assert that, from a pragmatic point of view, mathematicians treat mathematical objects as if they were real. If a theory is consistent, theorems are discovered (sometimes with analyses not necessarily different from those applied in sciences) and proofs are invented; modern technology cannot exist without accepting the law of excluded middle; a constructive proof may provide new ideas or methods but, from a mathematical point of view, a non-constructive proof is as sound as a constructive one. Accordingly, no mathematician, pure or applied, gets by without the axiom of choice; on the other hand, although different theorems and objects may appear depending on the acceptance or not of the continuum hypothesis, no important theorem applicable to the real world exists – at least until now – which depends on accepting or not this hypothesis. Mathematical objects built by applied mathematicians are often as useful as physical objects, even those objects created via computer-assisted or probabilistic methods. 


Author(s):  
Jorge Pecci Saavedra ◽  
Mark Connaughton ◽  
Juan José López ◽  
Alicia Brusco

The use of antibodies as labels for the localization of specific molecules in the nervous systan has been extensively applied in recent years. Both monoand polyclonal antibodies or antisera have been employed. The knowledge of the organization of neuronal connectivities, gliovascular relationships, glioneuronal relationships and other features of nerve tissue has greatly increased.A number of areas of the nervous systan have been analyzed in our laboratory, including the nuclei of the raphe system, the reticular formation, interpeduncular nucleus, substantia nigra, caudate nucleus, putamen, pallidum, spinal cord, pineal gland and others.From a technical point of view, a number of variables needed to be taken into account in order to obtain reliable and reproducible results. The design of the optimal conditions of tissue fixation, embedding, sectioning, dilution of antibodies, and adaptation of Sternberger PAP technique were sane of the parameters taken into account to optimize the results. It is critical that each step of the technique be defined for each particular case.


2009 ◽  
Vol 12 (3) ◽  
pp. E125-E130 ◽  
Author(s):  
Georg Nollert ◽  
Sabine Wich

Author(s):  
Mădălina Stănescu ◽  
Constantin Buta ◽  
Geanina Mihai ◽  
Lucica Roșu

Abstract In order to increase the competitiveness of an agricultural holding through the efficient use of the production factors, the modernization of an agricultural farm was carried out by exending the existing greenhouse with at least 700m2 for the intensive cultivation of ornamental plants - Thuja Orientalis. The material is produced by initiating crops in pots, with seedlings grown in pots or transplanting them in pots right after the first year of the multiplication and growing them in containers, appropriate to their size, until reaching their full value. From a technical point of view, reaching the objective will also be possible through a localized irrigation system.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 385
Author(s):  
Hyeonseung Im

A double negation translation (DNT) embeds classical logic into intuitionistic logic. Such translations correspond to continuation passing style (CPS) transformations in programming languages via the Curry-Howard isomorphism. A selective CPS transformation uses a type and effect system to selectively translate only nontrivial expressions possibly with computational effects into CPS functions. In this paper, we review the conventional call-by-value (CBV) CPS transformation and its corresponding DNT, and provide a logical account of a CBV selective CPS transformation by defining a selective DNT via the Curry-Howard isomorphism. By using an annotated proof system derived from the corresponding type and effect system, our selective DNT translates classical proofs into equivalent intuitionistic proofs, which are smaller than those obtained by the usual DNTs. We believe that our work can serve as a reference point for further study on the Curry-Howard isomorphism between CPS transformations and DNTs.


1988 ◽  
Vol 53 (4) ◽  
pp. 1177-1187
Author(s):  
W. A. MacCaull

Using formally intuitionistic logic coupled with infinitary logic and the completeness theorem for coherent logic, we establish the validity, in Grothendieck toposes, of a number of well-known, classically valid theorems about fields and ordered fields. Classically, these theorems have proofs by contradiction and most involve higher order notions. Here, the theorems are each given a first-order formulation, and this form of the theorem is then deduced using coherent or formally intuitionistic logic. This immediately implies their validity in arbitrary Grothendieck toposes. The main idea throughout is to use coherent theories and, whenever possible, find coherent formulations of formulas which then allow us to call upon the completeness theorem of coherent logic. In one place, the positive model-completeness of the relevant theory is used to find the necessary coherent formulas.The theorems here deal with polynomials or rational functions (in s indeterminates) over fields. A polynomial over a field can, of course, be represented by a finite string of field elements, and a rational function can be represented by a pair of strings of field elements. We chose the approach whereby results on polynomial rings are reduced to results about the base field, because the theory of polynomial rings in s indeterminates over fields, although coherent, is less desirable from a model-theoretic point of view. Ultimately we are interested in the models.This research was originally motivated by the works of Saracino and Weispfenning [SW], van den Dries [Dr], and Bunge [Bu], each of whom generalized some theorems from algebraic geometry or ordered fields to (commutative, von Neumann) regular rings (with unity).


Author(s):  
Marcel Buß

Abstract Immanuel Kant states that indirect arguments are not suitable for the purposes of transcendental philosophy. If he is correct, this affects contemporary versions of transcendental arguments which are often used as an indirect refutation of scepticism. I discuss two reasons for Kant’s rejection of indirect arguments. Firstly, Kant argues that we are prone to misapply the law of excluded middle in philosophical contexts. Secondly, Kant points out that indirect arguments lack some explanatory power. They can show that something is true but they do not provide insight into why something is true. Using mathematical proofs as examples, I show that this is because indirect arguments are non-constructive. From a Kantian point of view, transcendental arguments need to be constructive in some way. In the last part of the paper, I briefly examine a comment made by P. F. Strawson. In my view, this comment also points toward a connection between transcendental and constructive reasoning.


2021 ◽  
Vol 704 (1) ◽  
pp. 91-104
Author(s):  
Maria Raczyńska

The article describes and explains a prior centric Bayesian forecasting model for the 2020 US elections.The model is based on the The Economist forecasting project, but strongly differs from it. From the technical point of view, it uses R and Stan programming and Stan software. The article’s focus is on theoretical decisions made in the process of constructing the model and outcomes. It describes why Bayesian models are used and how they are used to predict US presidential elections.


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
Zofia Kostrzycka

International audience In this paper we focus on the intuitionistic propositional logic with one propositional variable. More precisely we consider the standard fragment $\{ \to ,\vee ,\bot \}$ of this logic and compute the proportion of tautologies among all formulas. It turns out that this proportion is different from the analog one in the classical logic case.


Sign in / Sign up

Export Citation Format

Share Document