Effect of available solar irradiance on vertical farming in semi-open urban places

2020 ◽  
Vol 10 (2) ◽  
pp. 717-726
Author(s):  
M. Moniruzzaman ◽  
K. K. Saha ◽  
M. M. Rahman ◽  
M. M. H. Oliver

Building a vertical farm in unused residential and commercial spaces is a challenge. It is particularly hard to decide upon a space where varying degrees of lighting conditions may prevail at different times of a day. This experiment was focused on how innovative micro-irrigation technology could be coupled with vertical farms. In this regard, three storied racks were designed to accommodate multiple one-feet-square tubs large enough to hold five Indian spinach (BARI Puishak- 2) plants at a time. Sandy loam soil was used for farming along with recommended doses of fertilizers. Different lighting conditions (2- 145 W/m2 average solar irradiance) were employed on the fifth floor of an urban building. Drip emitters were coupled in the system for irrigation. The management allowed deficit was kept to a maximum of 50% of the readily available moisture below the field capacity. The results suggested that drip irrigation systems provide higher water productivity (up to 31.82 kg/m3) compared to the in-field conditions when BARI Puishak-2 is grown in vertical farming. Water productivity of spinach was improved by optimized set-up of a drip irrigation system. The study also concluded that vertical farming is only suitable for indoor places where plenty of direct sunlight or diffused sunlight (not below 70 W/m2) is available. The economic analysis suggests that vertical farms under direct sunlight can be made profitable (BCR>1) in the long run.

2019 ◽  
Vol 25 (9) ◽  
pp. 41-53
Author(s):  
Heba Najem Abid ◽  
Maysoon Basheer Abid

Soil wetted pattern from a subsurface drip plays great importance in the design of subsurface drip irrigation (SDI) system for delivering the required water directly to the roots of the plant. An equation to estimate the dimensions of the wetted area in soil are taking into account water uptake by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, three soil textures namely loamy sand, sandy loam, and loam soil were used with three different types of crops tomato, pepper, and cucumber, respectively, and different values of drip discharge, drip depth, and initial soil moisture content were proposed. The soil wetting patterns were obtained at every thirty minutes for a total time of irrigation equal to three hours. Equations for wetted width and depth were predicted and evaluated by utilizing the statistical parameters (model efficiency (EF), and root mean square error (RMSE)). The model efficiency was more than 95%, and RMSE did not exceed 0.64 cm for three soils. This shows that evolved formula can be utilized to describe the soil wetting pattern from SDI system with good accuracy.      


2018 ◽  
Vol 110 (6) ◽  
pp. 2378-2389 ◽  
Author(s):  
Theivasigamani Parthasarathi ◽  
Koothan Vanitha ◽  
Sendass Mohandass ◽  
Eli Vered

2017 ◽  
Vol 9 (2) ◽  
pp. 399-409 ◽  
Author(s):  
Hussein M. Al-Ghobari ◽  
Ahmed Z. Dewidar

AbstractAn in-situ field study on two types of irrigation methods and three irrigation regimes was conducted in a sandy loam soil located at King Saud University, Riyadh, Saudi Arabia in 2015 and 2016. The study was to assess the effects of different irrigation methods on physiological and yield responses of tomato crops under water shortage conditions. The tested irrigation methods were surface drip irrigation (SDI) and subsurface drip irrigation (SSDI) systems. Irrigation treatments consisted of three strategies: (1) plants were irrigated with a water depth of 100% of the full irrigation supply; (2) plants were irrigated with a water depth of 80% of the full irrigation supply; and (3) plants were irrigated with a water depth of 60% of the full irrigation supply. Results indicated that water shortage significantly affected yield and quality response for each season. Over a 2-year average, yield increase was greatest in T1-SSDI followed by T2-SSDI and then T1-SDI. The yield response factor was 0.95 and 1.05 for SSDI and SDI, respectively. The highest water use efficiency values were obtained in T2-SSDI (16.3 kg m−3) and T1-SSDI (15.6 kg m−3), and the lowest ones, those estimated in T1-SDI (10.9 kg m−3) and T3-SDI (9.5 kg m−3).


Irriga ◽  
2018 ◽  
Vol 21 (3) ◽  
pp. 491
Author(s):  
ROBERTO CASTRO NASCIMENTO ◽  
PEDRO ROBINSON FERNANDES DE MEDEIROS ◽  
GABIANE SOUZA SANTOS ◽  
ELTON CARLOS PEREIRA VIEIRA DE ALENCAR TELES ◽  
DAYANE RODRIGUES GONÇALVES ◽  
...  

DINÂMICA DA OBSTRUÇÃO DE EMISSORES USADOS NA CULTURA DA UVA UTILIZANDO ÁGUA SALINA DE POÇO SUBTERRANEO  ROBERTO CASTRO NASCIMENTO1; PEDRO ROBINSON FERNANDES DE MEDEIROS2; GABIANE SOUZA SANTOS1; ELTON CARLOS PEREIRA VIEIRA DE ALENCAR TELES1; DAYANE RODRIGUES GONÇALVES1 E ANA PRISCILA FELIX MARTINS2 1Engenharia Agrícola, Universidade Federal do Vale do São Francisco – Campus Juazeiro, Av. Antonio Carlos Magalhães, 510 Country Club, CEP: 48.902-300 – Juazeiro, BA. [email protected], [email protected], [email protected], [email protected] de Engenharia Agrícola e Ambiental, Universidade Federal do Vale do São Francisco – Campus Juazeiro, Av. Antonio Carlos Magalhães, 510 Country Club, CEP: 48.902-300 – Juazeiro, BA. [email protected]  1 RESUMO A irrigação localizada envolve os sistemas onde a água é aplicada diretamente sobre a região da raiz, em pequenas intensidades, mas com alta freqüência, a fim de manter a umidade do solo na zona radicular próxima à capacidade de campo, sendo de grande importância no cenário agrícola brasileiro, com aplicações voltadas principalmente para a fruticultura, horticultura e fertirrigação. Os sistemas de irrigação localizada de alta frequência são os mais afetados pela obstrução dos emissores decorrente da contaminação da água. Este trabalho objetivou avaliar a obstrução de emissores em um sistema de irrigação por gotejamento usado na cultura da uva por 5 anos, com fertirrigação, utilizando água salina de poço profundo, afim de apontar possíveis causas e sugerir soluções que permitam o uso otimizado da água de irrigação. Como referência, os tubos gotejadores inicialmente foram submetidos a 360 h de irrigação com água do Serviço Autônomo de Água e Esgoto de Juazeiro-BA (SAAE) e posteriormente com água do Rio São Francisco.  O trabalho foi desenvolvido no Laboratório de Irrigação, no Campus de Juazeiro/BA, da UNIVASF. A estatística foi à descritiva, por medidas de tendência central e por medidas de dispersão de dados. Como principais resultados têm-se que os emissores com cinco anos de uso na fertirrigação, apresentaram inicialmente um grau de entupimento de 16,5%, bem superior se comparado com o mesmo tubo gotejador novo, em torno de 7%; com um aumento nos valores para 18% e 11%, respectivamente. Foi verificado que a água salina causou uma obstrução parcial maior que a água tratada do abastecimento. PALAVRAS CHAVE: grau de entupimento, água salina, uniformidade de aplicação.  NASCIMENTO, R. C.; MEDEIROS, P. R. F.; SANTOS, G. S.; TELES, E. C. P. V. A.; GONÇALVES, D. R.; MARTINS, A. P. F.DYNAMICS OF OBSTRUCTION OF THE ISSUER USED IN GRAPE CULTURE USING SALINE WATER WELL UNDERGROUND    2 ABSTRACT The drip irrigation involves irrigation systems where water is applied directly to the root area in small intensities, but with high frequency in order to maintain soil moisture in the root zone close to field capacity, and is of great importance in the Brazilian agricultural scenario, with applications geared mainly for fruits, vegetables and fertigation. High frequency localized irrigation systems are the most affected by obstruction of emitter due to water contamination. This study evaluated the emitters obstruction in a drip irrigation system used in wine growing for 5 years, with fertigation using saline water from deep well, in order to identify possible causes and suggest solutions to the optimal use of water irrigation. As reference, the drip irrigation system was subject to 360 h of irrigation with water and then with SAAE water from São Francisco River. The work was developed in the Irrigation Laboratory in the campus of Juazeiro / BA, UNIVASF. Statistical analysis was descriptive, for measures of central tendency and data dispersion measures. And the main results is that for the issuing company with five years of use in fertigation, initially, the proportion was 16.5% clogging, much higher compared to the same new dripline, around 7%; with 18% and 11% increase in  values for, respectively. It has been found that the saline water caused a partial obstruction greater than that of the treated water supply. Keywords: degree of clogging, salt water, uniformity of application.


1993 ◽  
Vol 3 (4) ◽  
pp. 383-393 ◽  
Author(s):  
E.B. Poling

North Carolina is experiencing a revitalization of the strawberry industry due to the adoption of plasticulture technologies and the California cultivar Chandler, which produces excellent yields and fruit quality on black plastic mulch. With this system, berries can be harvested in just 7 to 8 months after planting. The spring harvest season can last up to 6 weeks in most years. Strawberry plasticulture growers in North Carolina typically experience yields of 17,000 to 18,000 lb/acre (19,054 to 20,174 kg·ha-1). Cash expenses for the system are about $4345/acre ($10,736/ha). The system requires both an overhead sprinkler system for blossom and bud frost/freeze protection, and drip irrigation for supplying water and fertilizer in the prebloom, bloom, and fruiting periods. Sandy loam and clay loam soils are ideal for forming the lo-inch-high (25.4-cm) beds with bedding machines. Usually, 33% of the N, 50% of the K, and all of the P is applied preplant, with the remaining N and K applied through the drip-irrigation system. Problems associated with the plasticulture system include higher initial investment relative to matted-row production, and only one fruiting season is possible with the anthracnose-susceptible `Chandler' in the southeastern United States.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
H. S. Jat ◽  
P. C. Sharma ◽  
Ashim Datta ◽  
Madhu Choudhary ◽  
S. K. Kakraliya ◽  
...  

AbstractA study was conducted to design productive, profitable, irrigation water¸ nitrogen and energy use efficient intensive cereal systems (rice-wheat; RW and maize-wheat; MW) in North-West India. Bundling of conservation agriculture (CA) with sub-surface drip irrigation termed as CA+ were compared with CA alone and conventional tillage based and flood irrigated RW rotation (farmer’s practice; ScI). In contrast to conventional till RW rotation which consumed 1889 mm ha−1 irrigation water (2-yr mean), CA+ system saved 58.4 and 95.5% irrigation water in RW and MW rotations, respectively. CA+ practices saved 45.8 and 22.7% of irrigation water in rice and maize, respectively compared to CA with flood irrigation. On a system basis, CA+ practices saved 46.7 and 44.7% irrigation water under RW (ScV) and MW (ScVI) systems compared to their respective CA-based systems with flood irrigation (ScIII and ScIV). CA+ in RW system recorded 11.2% higher crop productivity and improved irrigation water productivity by 145% and profitability by 29.2% compared to farmers’ practice. Substitution of rice with maize (MW system; ScVI) recorded 19.7% higher productivity, saved 84.5% of irrigation water and increased net returns by 48.9% compared to farmer’s practice. CA+ RW and MW system improved energy productivity by 75 and 169% and partial factor productivity of N by 44.6 and 49.6%, respectively compared to ScI. The sub-surface drip irrigation system saved the fertilizer N by 20% under CA systems. CA+ in RW and MW systems recorded ~13 and 5% (2-yr mean) higher profitability with 80% subsidy on installing sub-surface drip irrigation system and similar profitability without subsidy scenario compared with their respective flood irrigated CA-based systems.


Author(s):  
Kasa Mekonen Tiku ◽  
Shushay Hagoes ◽  
Berhane Yohanes

The study was carried out at the effect of drip and surface irrigation (Furrow irrigation) methods on onion and sesame crops from December 2011 to May 2012 in the Tigray region of Northwest Ethiopia. The objective was to evaluate the family drip irrigation system in comparison with furrow irrigation system in terms of irrigation water productivity (using 100% ETc for both commodities). The water saved in drip irrigation over furrow irrigation was found to be 33% for onion and sesame crops. The irrigation water productivity of onion was 0.9 kg/m3 and 0.55 kg/m3 under drip and furrow irrigation methods respectively. The irrigation water productivity of sesame was 0.14 kg/m3 and 0.045 kg/m3 under drip and furrow irrigation methods respectively.


Sign in / Sign up

Export Citation Format

Share Document