scholarly journals Assessment of Genetic Diversity among Indian and Exotic Genotypes of Brassica juncea using Phenotypic Evaluation

Author(s):  
Vivek K. Singh ◽  
Ram Avtar ◽  
Mahavir . ◽  
Nisha Kumari ◽  
Manjeet . ◽  
...  

Background: Rapeseed-mustard is one of the most important oilseed crops in India, however, its genetic diversity is barely known. A better understanding on this topic is essential for the proper utilization of genotypes in crop improvement. Methods: Present study was carried out to determine the genetic diversity among 95 diverse genotypes of Brassica juncea (L.) in paired rows of 4 m length with a spacing of 30 x 10-15 cm (row × plant). Data were recorded on 11 different agro-morphological characters. Result: All the 95 genotypes were grouped into five distinct clusters based on Manhattan dissimilarity coefficients. Amongst the five clusters, cluster V and IV had the maximum number of genotypes (35 and 23 genotypes respectively) and cluster II with least number of genotypes (three). The Manhattan dissimilarity coefficients ranged from 0.741 to 8.299. Based on the genetic dissimilarity matrix, the maximum dissimilarity (8.299) was observed between the genotypes, DRMRIJ-15-133 and M 62. Cluster III recorded for medium plant height with medium early maturity and cluster I, had maximum mean values for most of the agro-morphological traits. The present work indicated the presence of high genetic diversity among genotypes, which can be used in future breeding programmes for developing mustard cultivars and germplasm management purposes.

2005 ◽  
Vol 3 (3) ◽  
pp. 373-384 ◽  
Author(s):  
Tania Carolina Camacho Villa ◽  
Nigel Maxted ◽  
Maria Scholten ◽  
Brian Ford-Lloyd

Awareness of the need for biodiversity conservation is now universally accepted, but most often recent conservation activities have focused on wild species. Crop species and the diversity between and within them has significant socioeconomic as well as heritage value. The bulk of genetic diversity in domesticated species is located in traditional varieties maintained by traditional farming systems. These traditional varieties, commonly referred to as landraces, are severely threatened by genetic extinction primarily due to their replacement by modern genetically uniform varieties. The conservation of landrace diversity has been hindered in part by the lack of an accepted definition to define the entity universally recognized as landraces. Without a definition it would be impossible to prepare an inventory and without an inventory changes in landrace constituency could not be recognized over time. Therefore, based on a literature review, workshop discussion and interviews with key informants, common characteristics of landraces were identified, such as: historical origin, high genetic diversity, local genetic adaptation, recognizable identity, lack of formal genetic improvement, and whether associated with traditional farming systems. However, although these characteristics are commonly present they are not always all present for any individual landrace; several crop-specific exceptions were noted relating to crop propagation method (sexual or asexual), breeding system (self-fertilized or cross-fertilized species), length of formal crop improvement, seed management (selection or random propagation) and use. This paper discusses the characteristics that generally constitute a landrace, reviews the exceptions to these characteristics and provides a working definition of a landrace. The working definition proposed is as follows: ‘a landrace is a dynamic population(s) of a cultivated plant that has historical origin, distinct identity and lacks formal crop improvement, as well as often being genetically diverse, locally adapted and associated with traditional farming systems’.


Caryologia ◽  
2021 ◽  
Vol 74 (2) ◽  
pp. 149-161
Author(s):  
Jing Ma ◽  
Wenyan Fan ◽  
Shujun Jiang ◽  
Xiling Yang ◽  
Wenshuai Li ◽  
...  

Genetic diversity studies are essential to understand the conservation and management of plant resources in any environment. The genus Consolida (DC.) Gray (Ranuculaceae) belongs to tribe Delphinieae. It comprises approximately 52 species, including the members of the genus Aconitella Spach. No detailed Random Amplified Polymorphic DNA (RAPD) studies were conducted to study Consolida genetic diversity. Therefore, we collected and analyzed 19 species from 12 provinces of regions. Overall, one hundred and twenty-seven plant specimens were collected. We showed significant differences in quantitative morphological characters in plant species. Unweighted pair group method with arithmetic mean and principal component analysis (PCA) divided Consolida species into two groups. All primers produced polymorphic amplicons though the extent of polymorphism varied with each primer. The primer OPA-06 was found to be most powerful and efficient as it generated a total of 24 bands of which 24 were polymorphic. The Mantel test showed correlation (r = 0.34, p=0.0002) between genetic and geographical distances. We reported high genetic diversity, which clearly shows the Consolida species can adapt to changing environments since high genetic diversity is linked to species adaptability. Present results highlighted the utility of RAPD markers and morphometry methods to investigate genetic diversity in Consolida species. Our aims were 1) to assess genetic diversity among Consolida species 2) is there a correlation between species genetic and geographical distance? 3) Genetic structure of populations and taxa.


2021 ◽  
Author(s):  
E. Lamalakshmi Devi ◽  
Umakanta Ngangkham ◽  
Akoijam Ratankumar Singh ◽  
Bhuvaneswari S ◽  
Konsam Sarika ◽  
...  

Abstract North- Eastern parts of India fall under Eastern Himalayan region and it is a diversity hotspot of many crops including maize. Evaluation of genetic diversity is required to tape the potentiality of genetic resources in any crop improvement programmes. In the present study, genetic diversity at fifty two microsatellite markers were conducted in 30 early maize inbreds developed from local landraces of NE India. Genetic diversity analysis revealed a total of 189 alleles with a mean of 3.63 alleles/ locus. The allele size ranged from 50 bp (phi 036) to 295 bp (p 101049) which revealed a high level of genetic diversity among the loci. The PIC among the 30 genotypes ranged from 0.17 (umc 1622) to 0.76 (umc 1153) with an average value of 0.49. The value of Expected Heterozygosity (HExp) ranged from 0.19 to 0.80 with an average of 0.57, whereas the Observed Heterozygosity (HObs) ranged from 0 to 0.89 with a mean of 0.14.The genetic dissimilarity between the genotype pairs ranged from 0.40 to 0.64 with a mean value of 0.57. Cluster analysis grouped the 30 inbreds into distinct three sub-clusters. Similarly, population structure and principal coordinate analysis) analysis also classified the 30 inbred lines into three-subpopulations. AMOVA revealed that 6% of total variance is due to differences among populations, while 94% of total molecular variance is accounted by within populations. Marker-trait associations showed a total of twelve SSR markers significantly associated with seven agronomic traits. From the present finding, these results show that the thirty maize inbreds have high genetic diversity which would be useful for choosing promising parents and for making cross combination based on genetic distance and clustering for genetic improvement programmes of maize.


Author(s):  
Narendra Singh Rajpoot ◽  
M. K. Tripathi ◽  
Sushma Tiwari ◽  
R. S. Tomar ◽  
V. S. Kandalkar

The genus Brassica is one of the most important oil seed crops in India with high degree of genetic diversity. In present study, genetic diversity was studied in forty germplasm lines and eight cultivars of Indian mustard using morphological traits and SSR markers. Morphological characters were taken for days to 50% flowering, days to maturity, plant height (cm), length of main raceme (cm), number of primary branches/plant, number of secondary branches/plant, number of silique per plant, number of seeds per silique, 1000 seed weight (g) and seed yield per plant (g). Total 50 SSR markers were used for characterization of these lines, out of which 7 SSR markers were highly polymorphic between all the germplasms of mustard. An UPGMA phonogram was constructed for all 48 Germplasms and the similarity coefficient ranged from 0.00 to 0.91. Number of alleles ranged from 3 to 4, genetic diversity ranged from 71% to 65% with average value of 67%, heterozygosity raged from 20 to 10% with average of 12% and PIC value for markers ranged from 0.65 to 0.59 with mean PIC value 0.61. All seven SSR primers showed PIC value above 0.5 (50%) indicating high genetic diversity in the studied plant material.


Genetika ◽  
2021 ◽  
Vol 53 (2) ◽  
pp. 783-798
Author(s):  
Xiaohui Qian ◽  
Shahram Mehri

Assessing the genetic diversity in the population is the prerequisite to start and develop plant breeding projects. Pistacia vera is considered as a commercial species of Pistacia genus. In Iran, Pistachio export is in the second place in terms of non-oil exports and in the first place among horticultural crops. Therefore, we collected and analyzed 11 pistachio genotype (Pistacia vera), from two provinces of Iran regions. Our aims were 1) to assess genetic diversity among some of Irainian pistachio cultivars 2) is there a correlation between species genetic and geographical distance? 3) Genetic structure of populations and taxa. We showed significant differences in quantitative morphological characters in plant species. Akbari cultivars depicted unbiased expected heterozygosity (UHe) in the range of 0.028. Shannon information was high (0.49) in Seifadini cultivars. Akbari cultivars howed the lowest value, 0.029. The observed number of alleles (Na) ranged from 0.261 to 2.700 in Shahpasand cultivars and Kalehghoochi cultivars. The effective number of alleles (Ne) was in the range of 1.021-1.800 for Akbari cultivars and Moosaabadi cultivars .Gene flow (Nm) was relatively low (0.38) in pistachio cultivars. The Mantel test showed correlation (r = 0.33, p=0.0001) between genetic and geographical distances. We reported high genetic diversity, which clearly shows the among some of Irainian pistachio cultivars can adapt to changing environments since high genetic diversity is linked to species adaptability. Present results highlighted the utility of RAPD markers and morphometry methods to investigate genetic diversity in pistachio cultivars.


2020 ◽  
Vol 42 ◽  
pp. e44076
Author(s):  
Ana Paula Gomes da Silva ◽  
Divan Soares da Silva ◽  
Mailson Monteiro do Rego ◽  
Albericio Pereira de Andrade ◽  
Fleming Sena Campos ◽  
...  

 The aim of this study was to perform a morphological and morphoagronomic analysis of wild Manihot species from a Brazilian semiarid region for inclusion in the collection at the Center for Agricultural Sciences, Federal University of Paraíba. To characterize the 55 accessions, 12 quantitative and 18 qualitative descriptors were used. A dissimilarity matrix was generated by Mahalanobis generalized distance (D²), and clusters were identified by the UPGMA method. It was possible to verify the formation of 8 dissimilar groups based on morphological characters and 5 groups based on morphometric characters, indicating the presence of genetic diversity among accessions. The evaluated morphometric variable with the greatest relative contribution was the length between the central lobe. Based on the dissimilarity matrix, the accessions 16 x 48 were the most genetically distant accessions, followed by 47 x 49. The accessions 4 Monteiro, 16 Soledad, 38 Boa Vista, 3 Pedra Lavrada, 7 Junco, 10 Barra de Santa Rosa, 21 Monteiro, and 39 Junco are the most promising and can be used as parents in breeding programs for this forage species.


Author(s):  
Justyna Leśniowska-Nowak ◽  
Sylwia Okoń ◽  
Aleksandra Wieremczuk

Abstract Genetic diversity analysis is an important tool in crop improvement. Species with high genetic diversity are a valuable source of variation used in breeding programs. The aim of this study was to assess the genetic diversity of four species belonging to the genus Aegilops, which are often used to expand the genetic variability of wheat and triticale. Forty-five genotypes belonging to the genus Aegilops were investigated. Within- and among-species genetic diversity was calculated based on REMAP (retrotransposon–microsatellite amplified polymorphism) molecular markers. Obtained results showed that REMAP markers are a powerful method for genetic diversity analysis, which produces a high number of polymorphic bands (96.09% of total bands were polymorphic). Among tested genotypes, Ae. crassa and Ae. vavilovii showed the highest genetic diversity and should be chosen as a valuable source of genetic variation.


Genetika ◽  
2021 ◽  
Vol 53 (1) ◽  
pp. 393-405
Author(s):  
Dezhong Bi ◽  
Dan Chen ◽  
Majid Khayatnezhad ◽  
Zohreh Hashjin ◽  
Zifa Li ◽  
...  

Genus Hypericum (Guttiferae, Hypericoideae) is perennial, belonging to the Hypericaceae family, having 484 species in forms of trees, shrubs, and herbs, distributed in 36 taxonomic sections. No detailed Random Amplified Polymorphic DNA (RAPD) studies were conducted to study Hypericum genetic diversity. Therefore, we collected and analyzed six species from five provinces of Iran regions. Overall, seventy plant specimens were collected. Our aims were 1) to assess genetic diversity among Hypericum species 2) is there a correlation between species genetic and geographical distance? 3) Genetic structure of populations and taxa. We showed significant differences in quantitative morphological characters in plant species. H. dogonbadanicum depicted unbiased expected heterozygosity (UHe) in the range of 0.10. Shannon information was high (0.32) in H. perforaturm. H. dogonbadanicum showed the lowest value, 0.17. The observed number of alleles (Na) ranged from 0.22 to 0.53 in H. dogonbadanicum and H. elongaturn. Gene flow (Nm) was relatively low (0.87) in Hypericum. The Mantel test showed correlation (r = 0.45, p=0.0001) between genetic and geographical distances. We reported high genetic diversity, which clearly shows the Hypericum species can adapt to changing environments since high genetic diversity is linked to species adaptability. Present results highlighted the utility of RAPD markers and morphometry methods to investigate genetic diversity in Hypericum species.


Genetika ◽  
2021 ◽  
Vol 53 (1) ◽  
pp. 363-378
Author(s):  
Juan Yin ◽  
Majid Khayatnezhad ◽  
Abdul Shakoor

Genetic diversity studies are essential to understand the conservation and management of plant resources in any environment. No detailed Random Amplified Polymorphic DNA (RAPD) studies were conducted to study Geranium genetic diversity. Therefore, we collected and analyzed thirteen species from nine provinces. Overall, one hundred and twenty-five plant specimens were collected. Our aims were 1) to assess genetic diversity among Geranium species 2) is there a correlation between species genetic and geographical distance? 3) Genetic structure of populations and taxa. We showed significant differences in quantitative morphological characters in plant species. Unweighted pair group method with arithmetic mean and multidimensional scaling divided Geranium species into two groups. G. sylvaticum depicted unbiased expected heterozygosity (UHe) in the range of 0.11. Shannon information was high (0.38) in G. columbinum. G. sylvaticum showed the lowest value, 0.14. The observed number of alleles (Na) ranged from 0.25 to 0.55 in G. persicum and G. tuberosum. The effective number of alleles (Ne) was in the range of 1.020-1.430 for G. tuberosum and G. collinum. Gene flow (Nm) was relatively low (0.33) in Geranium. The Mantel test showed correlation (r = 0.27, p=0.0002) between genetic and geographical distances. We reported high genetic diversity, which clearly shows the Geranium species can adapt to changing environments since high genetic diversity is linked to species adaptability. Present results highlighted the utility of RAPD markers and morphometry methods to investigate genetic diversity in Geranium species.


2021 ◽  
Author(s):  
Uyen Vu Thuy Hong ◽  
Muluneh Tamiru-Oli ◽  
Bhavna Hurgobin ◽  
Christopher R Okey ◽  
Artur R. Abreu ◽  
...  

Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and a versatile model system to study secondary metabolism. However, our knowledge of its genetic diversity is limited, restricting utilization of the available germplasm for research and crop improvement. We used genotyping-by-sequencing to investigate the level of genetic diversity and population structure in a collection of poppy germplasm consisting of 91 accessions originating in 30 countries of Europe, North Africa, America, and Asia. We identified five genetically distinct subpopulations. Although the accessions were from geographically diverse regions, no strong association was detected between geographic origin and subpopulation at regional and sub-regional levels. However, most accessions obtained from the same country were grouped together as genetically distinct, likely a consequence of the restriction on movement of poppy germplasm. Phylogenetic analysis identified clades that were largely consistent with the subpopulations detected. Clades could be differentiated broadly based on capsule dehiscence, plant stature and seed weight, traits believed to be associated with poppy domestication. Our study determined that the genetically diverse collection was likely composed of both wild and cultivated forms. This has direct implications for germplasm management and utilization of the available diversity for genetic improvement of poppy.


Sign in / Sign up

Export Citation Format

Share Document