Critical period for weed control in field pea

Author(s):  
Mainpal Singh ◽  
Rakesh Kumar ◽  
Satish Kumar ◽  
Virender Kumar

Field studies were conducted during 2008-09 and 2009-10 at Hisar, India to assess the effect of weed competition on crop growth and yield of field pea. Weed density increased up to 60 days and then decreased at later stages of crop growth. Seed yield of field pea was decreased by 50% when weeds were allowed to compete for the entire season. The critical period for weed control was 21-63 days in year 1 and 20-70 days in year 2 to achieve 95% of weed-free yield. It is therefore concluded that, to minimize yield loss due to weed competition in field pea, weed control measures should be targeted to avoid weed competition between 20-70 days after sowing.

2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


2020 ◽  
Vol 34 (5) ◽  
pp. 689-698
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractResearch using the critical period for weed control (CPWC) has shown that high-yielding cotton crops are very sensitive to competition from grasses and large broadleaf weeds, but the CPWC has not been defined for smaller broadleaf weeds in Australian cotton. Field studies were conducted over five seasons from 2003 to 2015 to determine the CPWC for smaller broadleaf weeds, using mungbean as a mimic weed. Mungbean was planted at densities of 1, 3, 6, 15, 30, and 60 plants m−2 with or after cotton emergence and added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 degree days of crop growth (GDD). Mungbean competed strongly with cotton, with season-long interference; 60 mungbean plants m−2 resulted in an 84% reduction in cotton yield. A dynamic CPWC function was developed for densities of 1 to 60 mungbean plants m−2 using extended Gompertz and exponential curves including weed density as a covariate. Using a 1% yield-loss threshold, the CPWC defined by these curves extended for the full growing season of the crop at all weed densities. The minimum yield loss from a single weed control input was 35% at the highest weed density of 60 mungbean plants m−2. The relationship for the critical time of weed removal was further improved by substituting weed biomass for weed density in the relationship.


Weed Science ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 346-352 ◽  
Author(s):  
Nicholas E. Korres ◽  
Jason K. Norsworthy

Cover crops are becoming increasingly common in cotton as a result of glyphosate-resistant Palmer amaranth; hence, a field experiment was conducted in 2009 and 2010 in Marianna, AR, with a rye cover crop used to determine its effects on the critical period for weed control in cotton. Throughout most of the growing season, weed biomass in the presence of a rye cover crop was lesser than that in the absence of a rye cover crop. In 2009, in weeks 2 through 7 after planting, weed biomass was reduced at least twofold in the presence of a rye cover compared with the absence of rye. In 2009, in both presence and absence of a rye cover crop, weed removal needed to begin before weed biomass was 150 g m−2, or approximately 4 wk after planting, to prevent yield loss > 5%. Weed density was less in 2010 than in 2009, so weed removal was not required until 7 wk after planting, at which point weed biomass values were 175 and 385 g m−2in the presence and absence of a cover crop, respectively.


Weed Science ◽  
1995 ◽  
Vol 43 (4) ◽  
pp. 634-639 ◽  
Author(s):  
Claudio M. Dunan ◽  
Philip Westra ◽  
Edward E. Schweizer ◽  
Donald W. Lybecker ◽  
Frank D. Moore

The question of when to control weeds traditionally has been approached with the calculation of critical periods (CP) based on crop yields. The concept of economic critical period (ECP) and early (EEPT) and late (LEFT) economic period thresholds are presented as a comprehensive approach to answer the same question based on economic losses and costs of control. ECP is defined as the period when the benefit of controlling weeds is greater than its cost. EEPT and LEFT are the limits of the ECP and can be used to determine when first and last weed control measures should be performed. Calculation of EEPT accounts for the economic losses due to weed competition that occur between planting and postemergence weed control. In this way it is possible to better evaluate the economic feasibility of using preplant or preemergence control tactics. The EEPT for DCPA application is analyzed in the context of onion production in Colorado. The EEPT for DCPA application was calculated from an empirical regression model that assessed the impact of weed load and time of weed removal on onion yields. The EEPT was affected by control efficacy, weed-free yield, DCPA cost, and onion price. DCPA application was economically advisable in only one of 20 fields analyzed because of the tow DCPA efficacy (60%).


Weed Science ◽  
2007 ◽  
Vol 55 (4) ◽  
pp. 359-364 ◽  
Author(s):  
Theodore M. Webster ◽  
Wilson H. Faircloth ◽  
J. Timothy Flanders ◽  
Eric P. Prostko ◽  
Timothy L. Grey

Bengal dayflower (also known as tropical spiderwort) is one of the most troublesome weeds in peanut in Georgia, United States. Field studies conducted in 2004 and 2005 evaluated the relationship between the duration of Bengal dayflower interference and peanut yield in an effort to optimize the timing of weed control. In 2004, the critical period of weed control (CPWC) necessary to avoid greater than 5% peanut yield loss was between 316 and 607 growing degree days (GDD), which corresponded to an interval between June 8 and July 2. In 2005, the CPWC ranged from 185 to 547 GDD, an interval between May 30 and July 3. Maximum yield loss in 2005 from season-long interference of Bengal dayflower was 51%. In 2004, production of peanut pods was eliminated by interference with Bengal dayflower for the initial 6 wk (495 GDD) of the growing season. Robust Bengal dayflower growth in 2004 shaded the peanut crop, likely intercepting fungicide applications and causing a reduction in peanut yield. Therefore, the competitive effects of Bengal dayflower are likely complicated with the activity of plant pathogens. In spite of higher Bengal dayflower population densities, greater Bengal dayflower growth, and greater peanut yield losses in 2004 than in 2005, the CPWC was a relatively similar 4-wk period that ended during the first week of July, for peanut that was planted in the first week of May.


Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Theodore M. Webster ◽  
Timothy L. Grey ◽  
J. Timothy Flanders ◽  
A. Stanley Culpepper

Benghal dayflower (formerly known as tropical spiderwort) is one of the most troublesome weeds in Georgia cotton. Field studies were conducted from 2003 to 2005 to evaluate the relationship between the duration of Benghal dayflower interference and cotton yield to establish optimum weed-control timing. To determine the critical period of weed control (CPWC), Benghal dayflower interference with cotton was allowed or prohibited in 2-wk intervals between 0 to 12 wk after crop planting. Maximum yield loss from Benghal dayflower in May-planted cotton was 21 to 30% in 2004 and 2005, whereas cotton planting delayed until June resulted in maximum yield losses of 40 to 60%. June-planted cotton had a CPWC of 190 to 800 growing degree days (GDD) in 2004 (52-d interval beginning at 16 d after planting [DAP]) and 190 to 910 GDD in 2005 (59-d interval beginning at 18 DAP). In contrast, May-planted cotton in 2005 had a narrower CPWC interval of 396 to 587 GDD (18 d) that occurred 3 wk later in the growing season (initiated at 39 DAP). May-planted cotton in 2004 did not have a critical range of weed-free conditions. Instead, a single weed removal at 490 GDD (44 DAP) averted a yield loss greater than 5%. It is recommended that fields infested with Benghal dayflower be planted with cotton early in the growing season to minimize weed interference with the crop.


2000 ◽  
Vol 53 ◽  
pp. 269-272 ◽  
Author(s):  
T.K. James ◽  
A. Rahman ◽  
J. Mellsop

The effect of early weed competition was determined for a maize (Zea mays) crop grown in Waikato Maize was established in three different environments viz weedy (no herbicide) grass weeds (preemergence atrazine) and broadleaf weeds (preemergence metolachlor) Surviving weeds were controlled with postemergence nicosulfuron (60 g/ha) after different periods of competition and the plots kept weed free for the remainder of the trial Weeds left completely uncontrolled for 4 weeks after emergence significantly reduced crop yields When a preemergence herbicide was used surviving weeds began to reduce maize yields after about 6 weeks with grasses having greater effect than broadleaf weeds The actual period before the weeds started affecting crop growth and yield appeared to be related to the time taken by the weeds to achieve complete ground cover


2012 ◽  
Vol 60 (3) ◽  
pp. 257-264 ◽  
Author(s):  
F. Takim

Field studies were conducted in 2010 and 2011 at the Teaching and Research Farm of the University of Ilorin, Nigeria (9°29′ N, 4°35′ E) to evaluate the effect of early weed competition on the growth and yield of maize. The experiment was designed as a randomized complete block (RCBD) with a split-plot arrangement and three replications. The main plots consisted of three weed control treatments included weedy (no herbicide), grass weeds (pre-emergence atrazine) and broadleaf weeds (pre-emergence metolachlor), while the sub-plots consisted of six durations of weed infestation (3, 4, 5, 6, 7 and 8 weeks after emergence). The pre-emergence herbicides had a greater effect on weed density and weed dry weight. Weed seedling emergence and weed dry weight increased significantly with an increase in the duration of weed interference. The grasses and broadleaf weeds had a similar influence on the growth and grain yield of maize. Three to five weeks of weed interference gave similar grain yields, which were significantly higher than those obtained in plots that had 6-8 weeks of weed interference. These results suggest that the maize crop must be kept free of weeds for 6-8 weeks after the application of pre-emergence herbicide to minimize weed-crop competition and harvest a good grain yield.


2019 ◽  
Vol 34 (2) ◽  
pp. 292-300 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over five seasons from 2004 to 2015 to determine the critical period for weed control (CPWC) in high-yielding, irrigated cotton using a competitive mimic grass weed, Japanese millet. Japanese millet was planted with or after cotton emergence at densities of 10, 20, 50, 100, and 200 plants m−2. Japanese millet was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 degree days of crop growth (GDD). Data were combined over years. Japanese millet competed strongly with cotton, with season-long interference resulting in an 84% reduction in cotton yield with 200 Japanese millet plants m−2. The data were fit to extended Gompertz and logistic curves including weed density as a covariate, allowing a dynamic CPWC to be estimated for densities of 10 to 200 Japanese millet plants m−2. Using a 1% yield-loss threshold, the CPWC commenced at 65 GDD, corresponding to 0 to 7 d after crop emergence (DAE), and ended at 803 GDD, 76 to 98 DAE with 10 Japanese millet plants m−2, and 975 GDD, 90 to 115 DAE with 200 Japanese millet plants m−2. These results highlight the high level of weed control required throughout the cropping season in high-yielding cotton to ensure crop losses do not exceed the cost of weed control.


2006 ◽  
Vol 20 (4) ◽  
pp. 867-872 ◽  
Author(s):  
Dogan Isik ◽  
Husrev Mennan ◽  
Bekir Bukun ◽  
Ahmet Oz ◽  
Mathieu Ngouajio

Field studies were conducted in 2001 and 2002 in the Black Sea Region of northern Turkey to determine the critical period for weed control (CPWC) in corn and the effects of weed interference on corn height. Treatments of increasing duration of weed interference and weed-free period were imposed at weekly intervals from 0 to 12 wk after crop emergence (WAE). The CPWC was determined with the use of 2.5, 5, and 10% acceptable yield loss levels by fitting logistic and Gompertz equations to relative yield data. With 5% yield loss level, the CPWC was 5 wk, starting at 0.2 WAE and ending at 5.2 WAE, which corresponded to the one- to five-leaf stage of corn. The CPWC increased to 8.9 wk, starting at 0 WAE and ending at 8.9 WAE, at the 2.5% yield loss level. At 10% yield loss level, the CPWC decreased to 1.7 wk, starting at 2.1 WAE and ending at 3.8 WAE.


Sign in / Sign up

Export Citation Format

Share Document