LABORATORY CULTURE AND LIFE-CYCLE EXPERIMENTS WITH THE BENTHIC AMPHIPOD MELITA PLUMULOSA (ZEIDLER)

2005 ◽  
Vol 24 (8) ◽  
pp. 2065 ◽  
Author(s):  
Ross V. Hyne ◽  
Sharyn A. Gale ◽  
Catherine K. King
2018 ◽  
Vol 14 (1) ◽  
pp. 10-24
Author(s):  
V. N. Fursov ◽  
L. S. Cherney

Darkling beetle Zophobas atratus (Coleoptera, Tenebrionidae) is recorded here for the first time as a new species for the fauna of Ukraine. Detailed study on morphology of preimaginal stages and biology of this species recently introduced to Ukraine, is given here. Zophobas atratus is an important species being easily reared in laboratory cultures and widely distributed in North and South America, Europe, and Asia. Detailed descriptions of all life stages, including egg, young and older larvae, pupa and adult of Z. atratus are required for further taxonomical study of the genus Zophobas, which isn’t yet definitively established. New identification keys for adults and larvae of the genera of tribe Tenebrionini are presented here, based on a comparative analysis of the taxonomic characters of adults and larvae of Z. atratus and species from the genera Tenebrio and Neatus. Comparative analysis of morphology of larva of Z. atratus and larvae of the tribe Cteniopodini of close subfamily Alleculinae was conducted here. The subfamily Alleculinae previously had the rank of family Alleculidae, but our analysis confirmed the reliability of its current taxonomic position as subfamily. The study of morphology of larvae of 1st and 2nd instars of Z. atratus revealed that they are characterized by special taxonomic structures that are not characteristic for oldest instars of larvae of Z. atratus. These characters include absence of spines on caudal segment, presence of a set of 4 setae at posterior margin of tergites of prothorax, metathorax, and 1st to 8th abdominal segments, strongly convex 2nd antennal segment and sensory zone in the form of an open ring on its apex, and etc. Moreover, structure of antenna of larvae of Z. atratus is similar to that of oldest larvae of most species of darkling beetles of the fauna of Ukraine. The most distinctive features of Z. atratus are: sexual dimorphism in structure of clypeus of adults; filiform sclerotized antenna of larva with a continuous sensory zone at apex of 2nd segment, weakly developed 3rd segment; fusion of sclerotized pleurites of 1st–8th abdominal segments with their tergites; sexual dimorphism in structure of 9th abdominal segment of pupa, and presence of two hooks on apex of its appendages. The data of original study of features of life cycle of Z. atratus are given. The pictures and photos of details of morphology of egg, larvae, pupa and adult of Z. atratus are presented. It was recored that life cycle of Z. atratus from laying of egg to the emergence of adult continues from 169 up to 181 days. Adults lived maximum up to 206 days. Maturation of eggs in female after copulation continues 10-11 days. Stage of egg continues 7 days, larva – up to 151 days, including pre-pupal period from 6 to 22 days, pupa – from 8 to 21 days. Twelve larval stages of Z. atratus were recorded in laboratory culture.


1976 ◽  
Vol 54 (5-6) ◽  
pp. 411-418 ◽  
Author(s):  
T.W. Flegel

The life cycle of the heterobasidiomycete, Sirobasidium magnum Boedijn, is described in artificial media. The haploid yeast phase, which may propagate by ballistospores, shows a modified tetrapolar mating system similar to that of Tremella Dill, ex Fr. The possible relationship to the imperfect yeasts Bullera Derx and Cryptococcus Kutzing emend. Phaff et Spencer is discussed.


1950 ◽  
Vol 41 (1) ◽  
pp. 79-97 ◽  
Author(s):  
L. H. Finlayson

The paper describes field and laboratory investigations on the bionomics of Cephalonomia waterstoni, a Bethylid parasite of Laemophloeus spp. A table is given in which are listed all the Bethylids attacking insect pests of stored products to which reference could be found in the literature.An infestation of Laemophloeus, associated with two “hot spots” in Manitoba wheat, which supported a large population of Cephalonomia is described.A simple technique for the laboratory culture of Cephalonomia is described.The life-cycle of C. waterstoni with Laemophloeus ferrugineus as host has been worked out.The lengths of egg, larval and cocoon (prepupal and pupal) stages at combinations of 25°C, 30°C. and 60 per cent., 80 per cent. R.H. are given. The egg and larval stages are short, lasting for about six days at 25°C. and four days at 30°C.Within the limits used, the relative humidity appears to have no effect on the duration of development at any stage. On the other hand, temperature exerts a considerable influence; the life-cycle at 30°C. is completed in two weeks but at 25°C. it takes three weeks.Again within the limits used, the mortality appears to increase with decrease in saturation deficit. Mortality ranged from 9 per cent, at S.D. 12·7 mm. to 36·5 per cent, at S.D. 5·0 mm.Without food or water at all combinations of 25–30°C. and 60–80 per cent. R.H. adults live for about four days, with a range of 0·5–9·5 days. There is no difference between the sexes. Unexplained contradictory results were obtained in two experiments.With normal or paralysed host larvae available at 30°C. and 80 per cent. R.H., males live no longer than when no food or water is available but females live for about five weeks at 25°C. and 80 per cent. R.H. and for about four weeks at 30°C. and 80 per cent. R.H.Males fed with sucrose solution at 30°C. and 80 per cent. R.H. live for several days longer than when starved : females live for the same length of time as when fed with host larvae.The pre-oviposition period at 25°C. and 80 per cent. R.H. is about five days; at 30°C. and 80 per cent. R.H. about one and a half days.Fecundity. At 25°C. and 80 per cent. R.H., Cephalonomia lays about 40 eggs on 30 host larvae : at 30°C. and 80 per cent. R.H., about 65 eggs on 40 larvae.Cephalonomia females readily oviposit on larvae that have been paralysed some time previously, and can be induced to oviposit on larvae already bearing eggs.Virgin females produce only male offspring (arrhenotoky).Eggs are laid in groups of one, two or three (rarely four) per larva. Single eggs produce mainly females ; pairs produce mainly one male and one female ; trios produce mainly one male and two females. At 25°C. and 80 per cent. R.H. more single eggs are laid than pairs ; at 30°C. and 80 per cent. R.H. more pairs are laid than singles. This results in the production of a higher proportion of females at 25°C. than at 30°C. The incidence of trios at both temperatures is low.C. waterstoni is equally viable on L. minutus, L. ferrugineus and L. turcicus but shows a marked preference for L. ferrugineus.


2019 ◽  
Author(s):  
Jessica A. Goodheart ◽  
Geetanjali Minsky ◽  
Mira N. Brynjegard-Bialik ◽  
Michael S. Drummond ◽  
J. David Munoz ◽  
...  

AbstractBioluminescence, or the production of light by living organisms via chemical reaction, is widespread across Metazoa. Culture of bioluminescent organisms from diverse taxonomic groups is important for determining the biosynthetic pathways of bioluminescent substrates, which may lead to new tools for biotechnology and biomedicine. Some bioluminescent groups may be cultured, including some cnidarians, ctenophores, and brittle stars, but those use luminescent substrates (luciferins) obtained from their diets, and therefore are not informative for determination of the biosynthethic pathways of the luciferins. Other groups, including terrestrial fireflies, do synthesize their own luciferin, but culturing them is difficult, and the biosynthetic pathway for firefly luciferin remains unclear. An additional independent origin of endogenous bioluminescence is found within ostracods from the family Cypridinidae, which use their luminescence for defense and, in Caribbean species, for courtship displays. Here, we report the first complete life cycle of a luminous ostracod (Vargula tsujii Kornicker & Baker, 1977, the California Sea Firefly) in the laboratory. We also describe the late-stage embryogenesis of Vargula tsujii and discuss the size classes of instar development. We find embryogenesis in V. tsujii ranges from 25-38 days, and this species appears to have five instar stages, consistent with ontogeny in other cypridinid lineages. We estimate a complete life cycle at 3-4 months. We also present the first complete mitochondrial genome for Vargula tsujii. Bringing a luminous ostracod into laboratory culture sets the stage for many potential avenues of study, including learning the biosynthetic pathway of cypridinid luciferin and genomic manipulation of an autogenic bioluminescent system.


Author(s):  
Betty Ruth Jones ◽  
Steve Chi-Tang Pan

INTRODUCTION: Schistosomiasis has been described as “one of the most devastating diseases of mankind, second only to malaria in its deleterious effects on the social and economic development of populations in many warm areas of the world.” The disease is worldwide and is probably spreading faster and becoming more intense than the overall research efforts designed to provide the basis for countering it. Moreover, there are indications that the development of water resources and the demands for increasing cultivation and food in developing countries may prevent adequate control of the disease and thus the number of infections are increasing.Our knowledge of the basic biology of the parasites causing the disease is far from adequate. Such knowledge is essential if we are to develop a rational approach to the effective control of human schistosomiasis. The miracidium is the first infective stage in the complex life cycle of schistosomes. The future of the entire life cycle depends on the capacity and ability of this organism to locate and enter a suitable snail host for further development, Little is known about the nervous system of the miracidium of Schistosoma mansoni and of other trematodes. Studies indicate that miracidia contain a well developed and complex nervous system that may aid the larvae in locating and entering a susceptible snail host (Wilson, 1970; Brooker, 1972; Chernin, 1974; Pan, 1980; Mehlhorn, 1988; and Jones, 1987-1988).


Sign in / Sign up

Export Citation Format

Share Document