scholarly journals Dairy Cow Feed Supplementation Alternatives for Diminishing Methane and Carbon Dioxide Concentration In Vitro

2016 ◽  
Vol 8 (3) ◽  
pp. 29-34
Author(s):  
Marielena Moncada-Lainez ◽  
Liang-Chou Hsia
1999 ◽  
Vol 90 (6) ◽  
pp. 1733-1740. ◽  
Author(s):  
Frank Wappler ◽  
Jens Scholz ◽  
Marko Fiege ◽  
Kerstin Kolodzie ◽  
Christiana Kudlik ◽  
...  

Background 4-Chloro-m-cresol (4-CmC) induces marked contractures in skeletal muscle specimens from individuals susceptible to malignant hyperthermia (MHS). In contrast, 4-CmC induces only small contractures in specimens from normal (MHN) patients. 4-CmC is a preservative within a large number of commercially available drug-preparations (e.g., insulin, heparin, succinylcholine), and it has been suggested that 4-CmC might trigger malignant hyperthermia. This study was designed to investigate the effects of 4-CmC in vivo and in vitro in the same animals. Methods After approval of the animal care committee, six Pietrain MHS and six control (MHN) swine were anesthetized with azaperone 4 mg/kg intramuscularly and metomidate 10 mg/kg intraperitoneally. After endotracheal intubation, lungs were mechanically ventilated (inspired oxygen fraction 0.3) and anesthesia was maintained with etomidate 2.5 mg x kg(-1) x h(-1) and fentanyl 50 microg x kg(-1) x h(-1). Animals were surgically prepared with arterial and central venous catheters for measurement of hemodynamic parameters and to obtain blood samples. Before exposure to 4-CmC in vivo, muscle specimens were excised for in vitro contracture tests with 4-CmC in concentrations of 75 and 200 microM. Subsequently, pigs were exposed to cumulative administration of 3, 6, 12, 24, and 48 mg/kg 4-CmC intravenously. If an unequivocal episode of malignant hyperthermia occurred, as indicated by venous carbon dioxide concentration > or = 70 mmHg, pH < or = 7.25, and an increase of temperature > or = 2 degrees C, the animals were treated with dantrolene, 3.5 mg/kg. Results All MHS swine developed malignant hyperthermia after administration of 4-CmC in doses of 12 or 24 mg/kg. Venous carbon dioxide concentration significantly increased and pH significantly decreased. Temperature increased in all MHS animals more than 2 degrees C. Blood lactate concentrations and creatine kinase levels were significantly elevated. All MHS swine were treated successfully with dantrolene. In contrast, no MHN swine developed signs of malignant hyperthermia. After receiving 4-CmC in a concentration of 48 mg/kg, however, all MHN animals died by ventricular fibrillation. The in vitro experiments showed that both concentrations of 4-CmC produced significantly greater contractures in MHS than in MHN specimens. Conclusions 4-CmC is in vivo a trigger of malignant hyperthermia in swine. However, the 4-CmC doses required for induction of malignant hyperthermia were between 12 and 24 mg/kg, which is about 150-fold higher than the 4-CmC concentrations within clinically used preparations.


1991 ◽  
Vol 159 (1) ◽  
pp. 371-385
Author(s):  
B. L. Tufts

Exhaustive exercise in cannulated sea lampreys, Petromyzon marinus, resulted in a marked extracellular acidosis in the arterial blood which had both a respiratory and a metabolic component. Blood CO2 tension (PCO2) returned to control levels within an hour after exercise, but the metabolic acidosis had a somewhat longer time course and the extracellular pH (pHe) did not fully recover until the 4 h recovery sample. The magnitude and duration of the changes in both the plasma lactate concentration and the concentration of metabolic protons were very similar and the maximal proton deficit after exercise was, therefore, only 1.5 mequiv l-1. In contrast to the changes in pHe, there were no significant changes in the erythrocyte pH (pHi) following the exercise period. The regulation of pHi was apparently not adrenergically mediated, however, since addition of catecholamines to lamprey blood in vitro had no significant effect on pHi. In addition, the period of exhaustive exercise in vivo was not associated with any significant changes in the mean cellular hemoglobin concentration. The total carbon dioxide concentration in the arterial whole blood and true plasma were both significantly reduced after exercise, but the total carbon dioxide concentration within the erythrocytes was transiently increased. Finally, there was a marked decrease in the arterial PO2 immediately after exercise, which was associated with a significant reduction in the amount of oxygen bound to hemoglobin; however, within 30 min, these values had both returned to normal. The maintenance of pHi presumably contributes to the regulation of oxygen transport in lampreys and it may be particularly important during the brief period immediately after exercise when oxygen transport is clearly compromised. Although several studies have provided evidence that chloride/bicarbonate exchange limitations may exist in agnathan blood in vitro, the present results demonstrate that the characteristics of carbon dioxide transport and acid-base regulation after exercise in P. marinus are not markedly different from those in other lower vertebrates.


1965 ◽  
Vol 208 (6) ◽  
pp. 1171-1176 ◽  
Author(s):  
S. S. Rothman ◽  
F. P. Brooks

A technic has been developed permitting direct collection of undiluted rabbit pancreatic secretion in vitro without vascular perfusion. The rates of secretion and output of electrolytes were comparable to those obtained in situ. When secretin was added, flow and bicarbonate concentration increased. Secretion in vitro ceased when inhibitors of glycolysis and aerobic metabolism were added to the bathing solution. The sodium concentration of the secretion exceeded that of the bathing solution in all but one observation. Potassium concentrations in secretion were linearly related (slope = 0.93) to the potassium concentration in the bath over a range of 5.8–12.0 mm. After 4–5 hr in vitro, the total carbon dioxide concentration of secretion had decreased while chloride concentration increased with no significant change in the rate of secretion. When secretory rate changed over a range of approximately 30–600 µliters/hr, chloride and carbon dioxide output varied directly with the rate of secretion. The osmolarity of the bathing solution and secretion were always equivalent. These results are incompatible with direct plasma filtration and bicarbonate-chloride exchange as the main mechanisms of pancreatic secretion.


2018 ◽  
Author(s):  
Oscar A. Douglas-Gallardo ◽  
Cristián Gabriel Sánchez ◽  
Esteban Vöhringer-Martinez

<div> <div> <div> <p>Nowadays, the search of efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf -SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). Chemical and electronic properties of the proposed SiQDs have been studied with Density Functional Theory (DFT) and Density Functional Tight-Binding (DFTB) approach along with a Time-Dependent model based on the DFTB (TD-DFTB) framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf -SiQDs for photochemically activated carbon dioxide fixation. </p> </div> </div> </div>


2016 ◽  
Vol 13 (7) ◽  
pp. 1053-1064 ◽  
Author(s):  
Yajie Geng ◽  
Qiang Fu ◽  
Bei Guo ◽  
Yun Li ◽  
Xiangrong Zhang ◽  
...  

2015 ◽  
Vol 197 (14) ◽  
pp. 2383-2391 ◽  
Author(s):  
Semen A. Leyn ◽  
Irina A. Rodionova ◽  
Xiaoqing Li ◽  
Dmitry A. Rodionov

ABSTRACTAutotrophic microorganisms are able to utilize carbon dioxide as their only carbon source, or, alternatively, many of them can grow heterotrophically on organics. Different variants of autotrophic pathways have been identified in various lineages of the phylumCrenarchaeota. Aerobic members of the orderSulfolobalesutilize the hydroxypropionate-hydroxybutyrate cycle (HHC) to fix inorganic carbon, whereas anaerobicThermoprotealesuse the dicarboxylate-hydroxybutyrate cycle (DHC). Knowledge of transcriptional regulation of autotrophic pathways inArchaeais limited. We applied a comparative genomics approach to predict novel autotrophic regulons in theCrenarchaeota. We report identification of two novel DNA motifs associated with the autotrophic pathway genes in theSulfolobales(HHC box) andThermoproteales(DHC box). Based on genome context evidence, the HHC box regulon was attributed to a novel transcription factor from the TrmB family named HhcR. Orthologs of HhcR are present in allSulfolobalesgenomes but were not found in other lineages. A predicted HHC box regulatory motif was confirmed byin vitrobinding assays with the recombinant HhcR protein fromMetallosphaera yellowstonensis. For the DHC box regulon, we assigned a different potential regulator, named DhcR, which is restricted to the orderThermoproteales. DhcR inThermoproteus neutrophilus(Tneu_0751) was previously identified as a DNA-binding protein with high affinity for the promoter regions of two autotrophic operons. The global HhcR and DhcR regulons reconstructed by comparative genomics were reconciled with available omics data inMetallosphaeraandThermoproteusspp. The identified regulons constitute two novel mechanisms for transcriptional control of autotrophic pathways in theCrenarchaeota.IMPORTANCELittle is known about transcriptional regulation of carbon dioxide fixation pathways inArchaea. We previously applied the comparative genomics approach for reconstruction of DtxR family regulons in diverse lineages ofArchaea. Here, we utilize similar computational approaches to identify novel regulatory motifs for genes that are autotrophically induced in microorganisms from two lineages ofCrenarchaeotaand to reconstruct the respective regulons. The predicted novel regulons in archaeal genomes control the majority of autotrophic pathway genes and also other carbon and energy metabolism genes. The HhcR regulon was experimentally validated by DNA-binding assays inMetallosphaeraspp. Novel regulons described for the first time in this work provide a basis for understanding the mechanisms of transcriptional regulation of autotrophic pathways inArchaea.


2021 ◽  
Vol 54 (3) ◽  
pp. 231-243
Author(s):  
Chao Liu ◽  
Zhenghua Hu ◽  
Rui Kong ◽  
Lingfei Yu ◽  
Yuanyuan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document