scholarly journals Cytology of Bone Marrow Haematopoietic Cells of Village Weavers (Ploceus cucullatus)

2018 ◽  
Vol 9 (1) ◽  
pp. 1-5
Author(s):  
A.T. Adetuga ◽  
A.J. Jubril ◽  
A.O. Omonona ◽  
T. Omadevuaye
2010 ◽  
pp. 4221-4228
Author(s):  
Wendy N. Erber

Leukaemia is a malignant neoplasm of haematopoietic cells originating in the marrow and spreading to the blood and other tissues, such as the lymph nodes, spleen, and liver. The characteristic feature of the neoplastic cells is that they retain the ability to proliferate but fail to differentiate normally into functional haematopoietic cells. This results in replacement of the normal bone marrow by the leukaemic cells....


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2669-2669
Author(s):  
Richard A. Wells ◽  
Kenneth R. Chien ◽  
Pei-Hua Yen

Abstract The retinoid X receptor (RXR) acts as an obligate heterodimeric partner for multiple nuclear hormone receptors (NRs), including the retinoic acid receptor (RAR), thyroid receptor (TR), vitamin D receptor (VDR), and peroxisome proliferator-activated receptor (PPAR). Targeted disruption of RXRα in the mouse yields an embryonic lethal phenotype due to impairment of cardiac development. We have utilized a conditional knockout approach to investigate the roles of NR signaling in haematopoiesis. Bone marrow cells were isolated from a mouse homozygous for a targeted mutation in which exon IV of RXRα is flanked by loxP sites (RXRαfl/fl). This mutation permits normal expression of RXRα, but expression of cre recombinase results in excision of exon IV, abrogating expression of functional RXRα (RXRαko/ko). We employed a retrovirus to deliver cre to conditionally targeted haematopoietic cells. Lineage-depleted RXRαfl/fl bone marrow (BM) cells were transduced with a retrovirus that expresses a GFP-cre fusion, or with a control retrovirus expressing only EGFP. Transduced cells were isolated to >97% purity by FACS. The effect of RXRα disruption on haematopoiesis was assessed by in vitro assays and by transplantation into strain-matched lethally irradiated recipient mice. Progenitor assays performed in methylcellulose medium supplemented with haematopoietic growth factors revealed that GFP-cre - transduced (RXRαko/ko) grafts contain slightly fewer BFU-E and CFU-GM per 10,000 cells (60% and 80% of EGFP - transduced RXRαfl/fl cells, respectively). Long-term culture initiating cells (LTCIC) were enumerated for RXRαko/ko and RXRαfl/fl grafts. RXRα excision resulted in a moderate (25%) reduction in LTCIC. RXRαko/ko HSCs grown in suspension culture (IMDM supplemented with 10% foetal bovine serum, IL3, IL6, and kit ligand) for two weeks show reduced proportions of Mac1 positive (5% vs 27%) and Gr-1 positive (5% vs 12%) cells and strikingly increased CD117 positive cells (84% vs 49%). In vivo function of RXRαko/ko HSCs was evaluated by transplantation into lethally irradiated mice. Recipients were analyzed at 2, 4, and 6 weeks post-transplantation. Two weeks after transplantation, RXRαko/ko and RXRαfl/fl HSCs showed similar patterns of engraftment, with GFP-positive erythroid and myeloid cells found mainly in the spleen. At 4 weeks, recipients of RXRαfl/fl grafts showed significant BM engraftment of myeloid and erythroid lineages, while RXRαko/ko recipients exhibited minimal BM engraftment. At 6 weeks post-transplant, engraftment of RXRαfl/fl cells was well-established in both BM and spleen. RXRαko/ko HSCs showed minimal myeloid engraftment, but both spleen and BM were populated predominantly by Ter119 positive erythroid cells, which exhibit markedly dyserythropoietic morphology. This difference was reflected in peripheral blood counts; recipients of RXRαko/ko grafts were profoundly anaemic, thrombocytopenic, and neutropenic, and pronounced RBC polychromasia and poikilocytosis. These data indicate that disruption of RXRα in adult HSCs results in a modest reduction in early and committed progenitors in vitro, but profoundly disrupts ability to reconstitute haematopoiesis in a lethally irradiated recipient. Myeloid and megakaryocyte lineages do not engraft in recipients of RXRαko/ko HSCs. RXRαko/ko erythropoiesis is dysplastic and yields markedly abnormal erythrocytes. Further investigation is required to elucidate the multiple roles of RXRα in haematopoiesis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 400-400
Author(s):  
Christine V. Ichim ◽  
Alden Chesney ◽  
Marciano D. Reis ◽  
Norman N. Iscove ◽  
Richard A. Wells

Abstract A central conundrum in the biology of myelodysplastic syndrome (MDS) is the observation that haematopoietic cells derived from the MDS clone have an increased disposition to apoptosis, yet gain clonal dominance in the bone marrow (BM). One explanation for this apparent paradox could be that MDS stem cells attain clonal dominance by acquiring an augmented probability of self-renewal. We therefore sought to identify novel genes associated with self-renewal that are overexpressed in both MDS and AML. By analyzing the growth of individual clonal siblings derived from low passage cultures of OCI-AML4 we found the expression of the orphan nuclear receptor NR2F6 to be four-fold higher in leukaemia cells with high proliferative capacity, compared to those which spontaneously lose proliferative ability. NR2F6 mRNA transcripts were more abundant in patients (n=37) with MDS, CMML, and AML compared to normal BM (n=16; p<0.0003 MDS, <0.03 CMML, <0.0009 AML), validating the clinical relevance of this gene and suggesting that deregulation of NR2F6 might be an early event in disease progression. We studied the effects of NR2F6 on differentiation and proliferation in vitro in the monoblastic cell line U937. Induction of differentiation of U937 cells resulted in a decrease in NR2F6 expression, while forced expression of NR2F6 reduced the doubling time of U937 cells, and inhibited induction of differentiation by retinoic acid. We next studied the effects of NR2F6 on the behaviour of primary haematopoietic cells. Overexpression of NR2F6 in murine bone marrow cells resulted in a significant reduction in the number of BFU-E and CFU-GM and the size of erythroid and myeloid colonies, consistent with the idea that NR2F6 inhibits maturation of normal BM. These results were corroborated by immunophenotyping of BM cultured in suspension, which showed that NR2F6 overexpression resulted in a significant reduction in mature monocytes and granulocytes. In addition, serial replating of haematopoietic colonies revealed greatly extended replating potential in NR2F6-overexpressing BM, consistent with augmented self-renewal capacity. Finally, we assessed the effects of NR2F6 on haematopoiesis in vivo by bone marrow transplantation. Competitive repopulation of lethally irradiated murine hosts with NR2F6-transduced bone marrow cells resulted in successful engraftment and augmented self-renewal as evidenced by increased engraftment in some recipients as well as increased colony formation in serial replating experiments. Recipients of NR2F6-transduced grafts had hypercellular BM, with abnormal localization of immature precursors (ALIP) and an increase in the percentage of blasts. Strikingly, ∼30% of recipients of secondary transplants of NR2F6-transduced bone marrow cells developed acute leukaemia, characterized by infiltration by blasts of bone marrow, peripheral blood, spleen and liver, and by haematopoietic failure. These data establish the importance of NR2F6 in the regulation of haematopoietic cell self-renewal and differentiation. This suggests that deregulated expression of NR2F6 is an important step in the pathogenesis of human MDS and AML and supports the hypothesis that acquisition of augmented self-renewal capacity helps the MDS stem cell gain clonal dominance. Furthermore, the NR2F6 transplant chimera system provides a mouse model of MDS, and the transformation of MDS to AML.


2013 ◽  
Vol 41 (8) ◽  
pp. S14
Author(s):  
Catherine Forristal ◽  
Falak Helwani ◽  
Bianca Nowlan ◽  
Sally Martin ◽  
Andrew Zannetino ◽  
...  

2020 ◽  
Vol 203 (1) ◽  
pp. 137-149
Author(s):  
W.‐L. Yao ◽  
Q. Wen ◽  
H.‐Y. Zhao ◽  
S.‐Q. Tang ◽  
Y.‐Y. Zhang ◽  
...  

2021 ◽  
Author(s):  
Yang Liu ◽  
Qi Chen ◽  
Hyun-Woo Jeong ◽  
Emma C. Watson ◽  
Cong Xu ◽  
...  

AbstractLocal signals provided by cells in specialized niche microenvironments regulate stem cell behaviour in many different organs and species. In adult mammalian bone marrow (BM), leptin receptor-positive (LepR+) reticular cells express secreted factors that control the function of haematopoietic stem and progenitor cells (HSPCs). During fetal development, the developing skeletal system is colonized by c-Kit+ haematopoietic cells de novo after a transient phase of liver haematopoiesis. The cellular and molecular mechanisms regulating de novo haematopoietic cell colonization and expansion remain largely unknown. Here, we report that fetal and adult BM exhibit fundamental differences both in terms of cellular composition and molecular interactions by single cell RNA sequencing (scRNA-seq) analysis. While LepR+ reticular cells are almost completely absent in fetal femur, arterial endothelial cells (AECs) are a source of signals controlling the initial HSPC expansion during BM development. Long-term haematopoietic stem cells (HSCs) and other c-Kit+ HSPCs are reduced when Wnt ligand secretion by AECs is genetically blocked. We identify Wnt2 as an AEC-derived signal that directly activates β-catenin dependent proliferation of fetal HSPCs. Treatment of HSPCs ex vivo with Wnt2 promotes their proliferation and improves engraftment in vivo after transplantation. Our work reveals a fundamental switch in the cellular organization and molecular regulation of BM niches in the embryonic and adult organism.


2021 ◽  
Author(s):  
Ioannis Kokkinopoulos ◽  
Aggelos Banos ◽  
Maria Grigoriou ◽  
Anastasia Filia ◽  
Theodora Manolakou ◽  
...  

ABSTRACTSystemic Lupus erythematosus (SLE) is an autoimmune disease where bone-marrow-derived haematopoietic cells have a key role in its pathogenesis with accumulating evidence suggesting an aberrant function of haematopoietic stem/progenitor cells (HSPCs). By employing next-generation sequencing, we compared the gene transcription signatures of CD34+ HSPCs deriving from either the bone marrow or HSPCs patrolling the bloodstream of healthy and individuals with SLE, seeking common transcriptional pathways that may have been modified between steady and disease states. Our findings indicate that circulating and bone marrow-derived HSPCs are distinct in steady and diseased states. Non-mobilised, SLE-derived circulating HSPCs demonstrated enhanced engrafting and altered differentiation capacities. Importantly, xenotransplantation of circulating HSPCs in humanised mice showed that human peripheral blood HSPCs possess the ability for extramedullary organ colonisation to the kidneys. SLE CD34+ HSPCs homing and engraftment at extramedullary sites such as the spleen and kidneys may participate in peripheral tissue injury.


Sign in / Sign up

Export Citation Format

Share Document