leukaemic cells
Recently Published Documents


TOTAL DOCUMENTS

499
(FIVE YEARS 30)

H-INDEX

45
(FIVE YEARS 2)

2021 ◽  
Vol 23 (1) ◽  
pp. 411
Author(s):  
Xiaoqing Xie ◽  
Daria Frank ◽  
Pradeep Kumar Patnana ◽  
Judith Schütte ◽  
Yahya Al-Matary ◽  
...  

Growth Factor Independence 1 (GFI1) is a transcription factor with an important role in the regulation of development of myeloid and lymphoid cell lineages and was implicated in the development of myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). Reduced expression of GFI1 or presence of the GFI1-36N (serine replaced with asparagine) variant leads to epigenetic changes in human and murine AML blasts and accelerated the development of leukaemia in a murine model of human MDS and AML. We and other groups previously showed that the GFI1-36N allele or reduced expression of GFI1 in human AML blasts is associated with an inferior prognosis. Using GFI1-36S, -36N -KD, NUP98-HOXD13-tg mice and curcumin (a natural histone acetyltransferase inhibitor (HATi)), we now demonstrate that expansion of GFI1-36N or –KD, NUP98-HODXD13 leukaemic cells can be delayed. Curcumin treatment significantly reduced AML progression in GFI1-36N or -KD mice and prolonged AML-free survival. Of note, curcumin treatment had no effect in GFI1-36S, NUP98-HODXD13 expressing mice. On a molecular level, curcumin treatment negatively affected open chromatin structure in the GFI1-36N or -KD haematopoietic cells but not GFI1-36S cells. Taken together, our study thus identified a therapeutic role for curcumin treatment in the treatment of AML patients (homo or heterozygous for GFI1-36N or reduced GFI1 expression) and possibly improved therapy outcome.


2021 ◽  
Vol 27 (2) ◽  
pp. 19-22
Author(s):  
Muhammad Amiro Rasheeq Mohd Radzi ◽  
Ariffin Nasir ◽  
Shatriah Ismail ◽  
Razan Hayati Zulkeflee ◽  
Juhara Haron ◽  
...  

Acute lymphoblastic leukaemia (ALL) is the most frequent childhood cancer. Children usually present with signs of bone marrow failure like recurrent or prolonged fever, pallor, lethargy, bleeding tendencies, bone pain and others. Occasionally they may present with sign of infiltration of leukaemic cells into other organs such as testicular and central nervous system, rarely to the periorbital or orbital region. Similarly in relapse cases, they typically presented either in bone marrow, central nervous system relapse or testicular but rarely orbital involvement.  Here we report the clinical case of a five-year-old boy who developed relapsed B-ALL, presented to us with unilateral right eye swelling without other clinical findings and absence of blast cells in the peripheral blood film as well as bone marrow aspirate specimen.


2021 ◽  
Vol 14 (10) ◽  
Author(s):  
Alasdair Duguid ◽  
Domenico Mattiucci ◽  
Katrin Ottersbach

ABSTRACT For patients and their families, the diagnosis of infant leukaemia is devastating. This disease has not seen the improvements in outcomes experienced with other paediatric leukaemias and it is becoming ever more apparent that infant leukaemia is a distinct biological entity. Insights into some of the distinguishing features of infant leukaemia, such as a single mutation – the MLL-gene rearrangement, the biology of disease aggressiveness and lineage plasticity, and the high incidence of central nervous system involvement, are likely to be gained from understanding the interactions between leukaemic cells and their environment or niche. The origins of infant leukaemia lie in the embryonic haematopoietic system, which is characterised by shifting locations and dynamic changes in the microenvironment. Understanding this foetal or embryonic context is integral to understanding infant leukaemia development. Owing to its rarity and prenatal origins, developing accurate modelling systems for further investigation of infant leukaemia is essential. In this Review, we discuss how available in vitro, ex vivo and in vivo infant leukaemia models contribute to our current understanding of the leukaemia niche in embryonic development, established disease and specialised non-haematopoietic niches. The mechanistic insights provided by accurate models will help identify viable novel therapeutic options.


Leukemia ◽  
2021 ◽  
Author(s):  
Lucie de Beauchamp ◽  
Ekaterini Himonas ◽  
G. Vignir Helgason

AbstractWhile the understanding of the genomic aberrations that underpin chronic and acute myeloid leukaemia (CML and AML) has allowed the development of therapies for these diseases, limitations remain. These become apparent when looking at the frequency of treatment resistance leading to disease relapse in leukaemia patients. Key questions regarding the fundamental biology of the leukaemic cells, such as their metabolic dependencies, are still unresolved. Even though a majority of leukaemic cells are killed during initial treatment, persistent leukaemic stem cells (LSCs) and therapy-resistant cells are still not eradicated with current treatments, due to various mechanisms that may contribute to therapy resistance, including cellular metabolic adaptations. In fact, recent studies have shown that LSCs and treatment-resistant cells are dependent on mitochondrial metabolism, hence rendering them sensitive to inhibition of mitochondrial oxidative phosphorylation (OXPHOS). As a result, rewired energy metabolism in leukaemic cells is now considered an attractive therapeutic target and the significance of this process is increasingly being recognised in various haematological malignancies. Therefore, identifying and targeting aberrant metabolism in drug-resistant leukaemic cells is an imperative and a relevant strategy for the development of new therapeutic options in leukaemia. In this review, we present a detailed overview of the most recent studies that present experimental evidence on how leukaemic cells can metabolically rewire, more specifically the importance of OXPHOS in LSCs and treatment-resistant cells, and the current drugs available to target this process. We highlight that uncovering specific energy metabolism dependencies will guide the identification of new and more targeted therapeutic strategies for myeloid leukaemia.


Mutagenesis ◽  
2021 ◽  
Author(s):  
Liana E Gynn ◽  
Elizabeth Anderson ◽  
Gareth Robinson ◽  
Sarah A Wexler ◽  
Gillian Upstill-Goddard ◽  
...  

Abstract Tumour microenvironments are hallmarked in many cancer types. In haematological malignancies, bone marrow (BM) mesenchymal stromal cells (MSC) protect malignant cells from drug-induced cytotoxicity. However, less is known about malignant impact on supportive stroma. Notably, it is unknown whether these interactions alter long-term genotoxic damage in either direction. The nucleoside analogue cytarabine (ara-C), common in haematological therapies, remains the most effective agent for acute myeloid leukaemia, yet one-third of patients develop resistance. This study aimed to evaluate the bidirectional effect of MSC and malignant cell co-culture on ara-C genotoxicity modulation. Primary MSC, isolated from patient BM aspirates for haematological investigations, and malignant haematopoietic cells (leukaemic HL-60) were co-cultured using trans-well inserts, prior to treatment with physiological dose ara-C. Co-culture genotoxic effects were assessed by micronucleus and alkaline comet assays. Patient BM cells from chemotherapy-treated patients had reduced ex vivo survival (P = 0.0049) and increased genotoxicity (P = 0.3172) than untreated patients. It was shown for the first time that HL-60 were protected by MSC from ara-C-induced genotoxicity, with reduced MN incidence in co-culture as compared to mono-culture (P = 0.0068). Comet tail intensity also significantly increased in ara-C-treated MSC with HL-60 influence (P = 0.0308). MSC sensitisation to ara-C genotoxicity was also demonstrated following co-culture with HL60 (P = 0.0116), which showed significantly greater sensitisation when MSC-HL-60 co-cultures were exposed to ara-C (P = 0.0409). This study shows for the first time that malignant HSC and MSC bidirectionally modulate genotoxicity, providing grounding for future research identifying mechanisms of altered genotoxicity in leukaemic microenvironments. MSC retain long-term genotoxic and functional damage following chemotherapy exposure. Understanding the interactions perpetuating such damage may inform modifications to reduce therapy-related complications, such as secondary malignancies and BM failure.


2021 ◽  
Vol 22 (13) ◽  
pp. 6888
Author(s):  
Vincent Kuek ◽  
Anastasia M. Hughes ◽  
Rishi S. Kotecha ◽  
Laurence C. Cheung

In recent decades, the conduct of uniform prospective clinical trials has led to improved remission rates and survival for patients with acute myeloid leukaemia and acute lymphoblastic leukaemia. However, high-risk patients continue to have inferior outcomes, where chemoresistance and relapse are common due to the survival mechanisms utilised by leukaemic cells. One such mechanism is through hijacking of the bone marrow microenvironment, where healthy haematopoietic machinery is transformed or remodelled into a hiding ground or “sanctuary” where leukaemic cells can escape chemotherapy-induced cytotoxicity. The bone marrow microenvironment, which consists of endosteal and vascular niches, can support leukaemogenesis through intercellular “crosstalk” with niche cells, including mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts. Here, we summarise the regulatory mechanisms associated with leukaemia–bone marrow niche interaction and provide a comprehensive review of the key therapeutics that target CXCL12/CXCR4, Notch, Wnt/b-catenin, and hypoxia-related signalling pathways within the leukaemic niches and agents involved in remodelling of niche bone and vasculature. From a therapeutic perspective, targeting these cellular interactions is an exciting novel strategy for enhancing treatment efficacy, and further clinical application has significant potential to improve the outcome of patients with leukaemia.


Author(s):  
Katerina E. Miari ◽  
Monica L. Guzman ◽  
Helen Wheadon ◽  
Mark T. S. Williams

Acute Myeloid Leukaemia (AML) is a commonly occurring severe haematological malignancy, with most patients exhibiting sub-optimal clinical outcomes. Therapy resistance significantly contributes towards failure of traditional and targeted treatments, disease relapse and mortality in AML patients. The mechanisms driving therapy resistance in AML are not fully understood, and approaches to overcome therapy resistance are important for curative therapies. To date, most studies have focused on therapy resistant mechanisms inherent to leukaemic cells (e.g., TP53 mutations), overlooking to some extent, acquired mechanisms of resistance through extrinsic processes. In the bone marrow microenvironment (BMME), leukaemic cells interact with the surrounding bone resident cells, driving acquired therapy resistance in AML. Growing evidence suggests that macrophages, highly plastic immune cells present in the BMME, play a role in the pathophysiology of AML. Leukaemia-supporting macrophage subsets (CD163+CD206+) are elevated in preclinical in vivo models of AML and AML patients. However, the relationship between macrophages and therapy resistance in AML warrants further investigation. In this review, we correlate the potential links between macrophages, the development of therapy resistance, and patient outcomes in AML. We specifically focus on macrophage reprogramming by AML cells, macrophage-driven activation of anti-cell death pathways in AML cells, and the association between macrophage phenotypes and clinical outcomes in AML, including their potential prognostic value. Lastly, we discuss therapeutic targeting of macrophages, as a strategy to circumvent therapy resistance in AML, and discuss how emerging genomic and proteomic-based approaches can be utilised to address existing challenges in this research field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Howon Lee ◽  
Silvia Park ◽  
Jae-Ho Yoon ◽  
Byung-Sik Cho ◽  
Hee-Je Kim ◽  
...  

AbstractLeukapheresis is used for the mechanical removal of leukaemic cells in hyperleukocytosis. However, the effectiveness of leukapheresis remains unclear due to selection and confounding factors in the cohorts. We compared the effectiveness of leukapheresis among the subgroups according to either the 2016 World Health Organization classification or the number of cytogenetic abnormalities with a retrospective, single-centre study from January 2009 to December 2018. Acute myeloid leukaemia (AML, n = 212) and acute lymphoblastic leukaemia (ALL, n = 97) were included. The 30-day survival rates (95% confidence interval, 95% CI) for AML and ALL were 86.3% (81.6–90.9%) and 94.8% (90.3–99.2%), respectively. For AML, ‘primary AML with myelodysplasia-related changes’ and ‘AML with biallelic mutation of CEBPA’ showed better 30-day survival outcomes (P = 0.026) than the other subgroups. A higher platelet count after leukapheresis was associated with better 30-day survival in AML patients (P = 0.029). A decrease in blast percentage count after leukapheresis was associated with better 30-day survival in ALL patients (P = 0.034). Our study suggested that prophylactic platelet transfusion to raise the platelet count to 50 × 109/L or greater might improve clinical outcome in AML patients undergoing leukapheresis.


Sign in / Sign up

Export Citation Format

Share Document