scholarly journals Document Similarity Measure Based on the Earth Mover\'s Distance Utilizing Latent Dirichlet Allocation

2016 ◽  
Vol 12 (2) ◽  
pp. 214-222 ◽  
Author(s):  
Min-Hee Jang ◽  
Tae-Hwan Eom ◽  
Sang-Wook Kim ◽  
Young-Sup Hwang
2020 ◽  
Vol 13 (44) ◽  
pp. 4474-4482
Author(s):  
Vasantha Kumari Garbhapu ◽  

Objective: To compare the topic modeling techniques, as no free lunch theorem states that under a uniform distribution over search problems, all machine learning algorithms perform equally. Hence, here, we compare Latent Semantic Analysis (LSA) or Latent Dirichlet Allocation (LDA) to identify better performer for English bible data set which has not been studied yet. Methods: This comparative study divided into three levels: In the first level, bible data was extracted from the sources and preprocessed to remove the words and characters which were not useful to obtain the semantic structures or necessary patterns to make the meaningful corpus. In the second level, the preprocessed data were converted into a bag of words and numerical statistic TF-IDF (Term Frequency – Inverse Document Frequency) is used to assess how relevant a word is to a document in a corpus. In the third level, Latent Semantic analysis and Latent Dirichlet Allocations methods were applied over the resultant corpus to study the feasibility of the techniques. Findings: Based on our evaluation, we observed that the LDA achieves 60 to 75% superior performance when compared to LSA using document similarity within-corpus, document similarity with the unseen document. Additionally, LDA showed better coherence score (0.58018) than LSA (0.50395). Moreover, when compared to any word within-corpus, the word association showed better results with LDA. Some words have homonyms based on the context; for example, in the bible; bear has a meaning of punishment and birth. In our study, LDA word association results are almost near to human word associations when compared to LSA. Novelty: LDA was found to be the computationally efficient and interpretable method in adopting the English Bible dataset of New International Version that was not yet created. Keywords: Topic modeling; LSA; LDA; word association; document similarity;Bible data set


2021 ◽  
Vol 8 (1) ◽  
pp. 127
Author(s):  
Ngurah Agus Sanjaya ER

<p class="Abstrak">Cerita-cerita berbahasa Bali memiliki topik yang beragam namun memuat nilai kearifan lokal yang perlu untuk dilestarikan. Jika cerita-cerita tersebut dapat dikelompokkan berdasarkan topik, tentu akan sangat memudahkan bagi para pembacanya dalam memilih bacaan yang diinginkan. <em>Latent Dirichlet Allocation</em> (<em>LDA</em>) mengasumsikan bahwa suatu dokumen dibangun dari perpaduan topik-topik tersembunyi. Dengan menerapkan <em>LDA</em> pada kumpulan dokumen, maka dapat diketahui distribusi topik-topik tersembunyi pada kumpulan dokumen secara umum maupun masing-masing dokumen. Pada penelitian ini, distribusi topik yang ditemukan oleh LDA pada  kumpulan cerita berbahasa Bali digunakan untuk melakukan pengelompokkan cerita secara otomatis. Tahapan penelitian meliputi digitalisasi cerita, tokenisasi, <em>case-folding</em>, <em>stemming</em>, pencarian topik dengan <em>LDA</em>, representasi dokumen dan klasterisasi hirarki secara <em>agglomerative</em>. Pengujian dilakukan menggunakan 100 buah data cerita berbahasa Bali yang didapat dari situs daring maupun Dinas Kebudayaan Provinsi Bali untuk menghitung akurasi hasil klasterisasi. Evaluasi dilakukan juga untuk melihat pengaruh jumlah kata dan ukuran kesamaan yang digunakan terhadap akurasi. Akurasi hasil klasterisasi tertinggi yang didapatkan adalah 62% pada saat jumlah kata yang digunakan sebagai representasi dokumen berjumlah 3000 kata. Selain itu, didapatkan suatu kesimpulan bahwa akurasi klasterisasi juga sangat dipengaruhi oleh ukuran kesamaan yang digunakan ketika melakukan penggabungan dokumen serta jumlah kata sebagai representasi dokumen.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstrak"><em>Balinese folklores have diverse topics but contain local wisdom that needs to be preserved. Grouping the stories based on the topics can certainly help readers to choose their readings accordingly. Latent Dirichlet Allocation (LDA) assumes that a document is built from a combination of hidden topics. By applying LDA to a collection of documents (corpus), the global distribution of hidden topics in the corpus as well as the distribution of each individual document in the corpus can be identified. In this research, the individual distribution of topics in Balinese folklores is used to group stories based on common topics. The research stages include story digitization, tokenization, case-folding, stemming, topic search with LDA, document representation and agglomerative hierarchical clustering. Performance evaluation was carried out using 100 Balinese folklores data obtained from online sites and the Bali Provincial Cultural Office to calculate the accuracy of the clustering results. Evaluation is also carried out to see the effect of the number of words and the similarity measure used on accuracy. The highest accuracy obtained is 62% when the number of words used as the representation of a document is 3000 words. In addition, it can be concluded that accuracy is also greatly influenced by the similarity measure used when merging the documents and the number of words for document representation.</em></p>


Author(s):  
Priyanka R. Patil ◽  
Shital A. Patil

Similarity View is an application for visually comparing and exploring multiple models of text and collection of document. Friendbook finds ways of life of clients from client driven sensor information, measures the closeness of ways of life amongst clients, and prescribes companions to clients if their ways of life have high likeness. Roused by demonstrate a clients day by day life as life records, from their ways of life are separated by utilizing the Latent Dirichlet Allocation Algorithm. Manual techniques can't be utilized for checking research papers, as the doled out commentator may have lacking learning in the exploration disciplines. For different subjective views, causing possible misinterpretations. An urgent need for an effective and feasible approach to check the submitted research papers with support of automated software. A method like text mining method come to solve the problem of automatically checking the research papers semantically. The proposed method to finding the proper similarity of text from the collection of documents by using Latent Dirichlet Allocation (LDA) algorithm and Latent Semantic Analysis (LSA) with synonym algorithm which is used to find synonyms of text index wise by using the English wordnet dictionary, another algorithm is LSA without synonym used to find the similarity of text based on index. LSA with synonym rate of accuracy is greater when the synonym are consider for matching.


2021 ◽  
Vol 920 ◽  
Author(s):  
Mohamed Frihat ◽  
Bérengère Podvin ◽  
Lionel Mathelin ◽  
Yann Fraigneau ◽  
François Yvon

Abstract


2021 ◽  
pp. 016555152110077
Author(s):  
Sulong Zhou ◽  
Pengyu Kan ◽  
Qunying Huang ◽  
Janet Silbernagel

Natural disasters cause significant damage, casualties and economical losses. Twitter has been used to support prompt disaster response and management because people tend to communicate and spread information on public social media platforms during disaster events. To retrieve real-time situational awareness (SA) information from tweets, the most effective way to mine text is using natural language processing (NLP). Among the advanced NLP models, the supervised approach can classify tweets into different categories to gain insight and leverage useful SA information from social media data. However, high-performing supervised models require domain knowledge to specify categories and involve costly labelling tasks. This research proposes a guided latent Dirichlet allocation (LDA) workflow to investigate temporal latent topics from tweets during a recent disaster event, the 2020 Hurricane Laura. With integration of prior knowledge, a coherence model, LDA topics visualisation and validation from official reports, our guided approach reveals that most tweets contain several latent topics during the 10-day period of Hurricane Laura. This result indicates that state-of-the-art supervised models have not fully utilised tweet information because they only assign each tweet a single label. In contrast, our model can not only identify emerging topics during different disaster events but also provides multilabel references to the classification schema. In addition, our results can help to quickly identify and extract SA information to responders, stakeholders and the general public so that they can adopt timely responsive strategies and wisely allocate resource during Hurricane events.


Author(s):  
Xi Liu ◽  
Yongfeng Yin ◽  
Haifeng Li ◽  
Jiabin Chen ◽  
Chang Liu ◽  
...  

AbstractExisting software intelligent defect classification approaches do not consider radar characters and prior statistics information. Thus, when applying these appaoraches into radar software testing and validation, the precision rate and recall rate of defect classification are poor and have effect on the reuse effectiveness of software defects. To solve this problem, a new intelligent defect classification approach based on the latent Dirichlet allocation (LDA) topic model is proposed for radar software in this paper. The proposed approach includes the defect text segmentation algorithm based on the dictionary of radar domain, the modified LDA model combining radar software requirement, and the top acquisition and classification approach of radar software defect based on the modified LDA model. The proposed approach is applied on the typical radar software defects to validate the effectiveness and applicability. The application results illustrate that the prediction precison rate and recall rate of the poposed approach are improved up to 15 ~ 20% compared with the other defect classification approaches. Thus, the proposed approach can be applied in the segmentation and classification of radar software defects effectively to improve the identifying adequacy of the defects in radar software.


Sign in / Sign up

Export Citation Format

Share Document