scholarly journals Comparative Finite Element Analysis of the Effects of Tillage Tool Geometry on Soil Disturbance and Reaction Forces

2014 ◽  
Vol 7 (15) ◽  
pp. 3145-3149 ◽  
Author(s):  
Mohamed Ahmed Elbashir ◽  
Zheng Zhao ◽  
Eidam Ahmed Hebeil ◽  
Xiaoyu Li
2012 ◽  
Vol 548 ◽  
pp. 465-470
Author(s):  
Asaad A. Abdullah ◽  
Usama J. Naeem ◽  
Cai Hua Xiong

In recent years, applications have been proven finite-element method (FEM) in metal-cutting operations to be effective process in the study of cutting and chip formation. In this study, the simulation results are useful for both researchers and machine tool manufacturers for improving the design of cutting parameters. Finite-element analysis (FEA) that used in this study of simulation the cutting parameters and tool geometries effects on the force and temperature in turning AISI 1040. The simulation parameters that used in this study are cutting speed (75 - 300 m/min),feed rate (0.2 mm/rev), cut depth (0.75-1.5 mm), and rake angle (0-20 °). The results of cutting forces were (240 – 520 N), the temperature were (300-420 °C), and the heat rate (14202.3-83772.8 W/mm3) on the cutting edge. The simulation process also show that the increase of cutting speed leads to decrease in the cutting forces, while it has increasing in temperature, and heat rate. Also, the results show that the increase of cutting depth associated increase the cutting force only.


1998 ◽  
Vol 120 (2) ◽  
pp. 234-240 ◽  
Author(s):  
Nicole Zirkelback ◽  
Luis San Andre´s

Currently, the herringbone groove journal bearing (HGJB) has important applications in miniature rotating machines such as those found in the computer information storage industry. Grooves scribed on either the rotating or stationary member of the bearing pump the lubricating fluid inward thus generating support stiffness and improving its dynamic stability when operating concentrically. The narrow groove theory (NGT), traditionally adopted to model the concentric operation of these bearings, is limited to bearings with a large number of grooves. A finite element analysis is introduced for prediction of the static and rotordynamic forced response in HGJBs with finite numbers of grooves. Results from this analysis are then compared to available experimental data as well as to estimates from the NGT. A bearing geometry parametric study is then conducted to determine optimum rotordynamic force coefficients. A discussion on the temporal variation of the bearing reaction forces and force coefficients for a rotating journal with a small number of grooves is also presented. These changes can be significant at high operating eccentricities, possibly inducing a parametric excitation in rotating systems employing this type of bearing.


2002 ◽  
Vol 11 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Chatchai Kunavisarut ◽  
Lisa A. Lang ◽  
Brian R. Stoner ◽  
David A. Felton

2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


Sign in / Sign up

Export Citation Format

Share Document