scholarly journals Fault Strategy Analysis for Three-phase Cascaded Multi-level Inverter

2015 ◽  
Vol 9 (5) ◽  
pp. 327-335
Author(s):  
E. Parimalasundar ◽  
N. Suthanthira Vanitha
2021 ◽  
Vol 17 (1) ◽  
pp. 1-13
Author(s):  
Adala Abdali ◽  
Ali Abdulabbas ◽  
Habeeb Nekad

The multilevel inverter is attracting the specialist in medium and high voltage applications, among its types, the cascade H bridge Multi-Level Inverter (MLI), commonly used for high power and high voltage applications. The main advantage of the conventional cascade (MLI) is generated a large number of output voltage levels but it demands a large number of components that produce complexity in the control circuit, and high cost. Along these lines, this paper presents a brief about the non-conventional cascade multilevel topologies that can produce a high number of output voltage levels with the least components. The non-conventional cascade (MLI) in this paper was built to reduce the number of switches, simplify the circuit configuration, uncomplicated control, and minimize the system cost. Besides, it reduces THD and increases efficiency. Two topologies of non-conventional cascade MLI three phase, the Nine level and Seventeen level are presented. The PWM technique is used to control the switches. The simulation results show a better performance for both topologies. THD, the power loss and the efficiency of the two topologies are calculated and drawn to the different values of the Modulation index (ma).


Smart grid technology can be best utilized by having proper grid supporting equipment. This paper demonstrates the use of a three-phase, 9-level, hybridised cascaded multi-level inverter topology in a smart grid. A pulse width modulation scheme with phase disposition is employed in this inverter to control the firing signals to operate this circuit. These firing signals can be monitored and controlled for optimal usage in smart grid operation. Operational principles with switching equations are described in detail. Crucial voltage identification has been performed by analyzing the THD in output during source shortages by performing Fast Fourier transform analysis. Least THD of 15.82% is attained in the output voltage waveform of the proposed three phase inverter topology.


Author(s):  
Chinnapettai Ramalingam Balamurugan ◽  
S.P. Natarajan ◽  
T.S. Anandhi

The multi level inverter system is habitually exploited in AC drives, when both reduced harmonic contents and high power are required. In this paper, a new topology for three phase asymmetrical multilevel inverter employing reduced number of switches is introduced. With less number of switches, the cost, space and weight of the circuit are automatically reduced. This paper discusses the new topology, the switching strategies and the operational principles of the chosen inverter. Simulation is carried out using MATLAB-SIMULINK. Various conventional PWM techniques that are appropriate to the chosen circuit such as PDPWM, PODPWM, APODPWM, VFPWM and COPWM are employed in this work. COPWM technique affords the less THD value and also affords a higher fundamental RMS output voltage.


2014 ◽  
Vol 984-985 ◽  
pp. 1013-1022
Author(s):  
Venkatesan Jamuna ◽  
Natesan Saritha ◽  
N. Nanthini

This work presents a photovoltaic (PV) system, connected to a three phase grid. This work focuses on fault analysis in a grid connected photo-voltaic (PV) energy system. In this work, a three phase Multi-level Inverter connected with an AC grid fed by photovoltaic systems with advanced sine PWM control scheme is presented. The proposed modulation technique uses single reference signal and number of high frequency carrier signals to generate the PWM signal. Now a days, most of the photovoltaic (PV) power sources are connected to the AC grid. When photovoltaic power sources are connected to grid, the grid connected PV system is affected by various power quality issues like voltage sag, voltage swell, voltage disturbances, waveform distortions and three phase fault. One of the main power quality problems is three phase fault and it is appeared in the grid due to short circuit condition between two phases and ground. Fault analysis is carried out by creating a LG, LL, LLL and LLLG fault in the grid connected systems. Grid side voltage, current and power waveforms at the grid side are analysed with fault conditions. A detailed simulation has been done for the Multi-Level Inverter and the validation of system is verified through MATLAB/SIMULINK and the results are presented.


Sign in / Sign up

Export Citation Format

Share Document