Fault Analysis on Photo Voltaic Fed Grid Connected Systems

2014 ◽  
Vol 984-985 ◽  
pp. 1013-1022
Author(s):  
Venkatesan Jamuna ◽  
Natesan Saritha ◽  
N. Nanthini

This work presents a photovoltaic (PV) system, connected to a three phase grid. This work focuses on fault analysis in a grid connected photo-voltaic (PV) energy system. In this work, a three phase Multi-level Inverter connected with an AC grid fed by photovoltaic systems with advanced sine PWM control scheme is presented. The proposed modulation technique uses single reference signal and number of high frequency carrier signals to generate the PWM signal. Now a days, most of the photovoltaic (PV) power sources are connected to the AC grid. When photovoltaic power sources are connected to grid, the grid connected PV system is affected by various power quality issues like voltage sag, voltage swell, voltage disturbances, waveform distortions and three phase fault. One of the main power quality problems is three phase fault and it is appeared in the grid due to short circuit condition between two phases and ground. Fault analysis is carried out by creating a LG, LL, LLL and LLLG fault in the grid connected systems. Grid side voltage, current and power waveforms at the grid side are analysed with fault conditions. A detailed simulation has been done for the Multi-Level Inverter and the validation of system is verified through MATLAB/SIMULINK and the results are presented.

Author(s):  
Hamzah Eteruddin ◽  
Hendry Hendry ◽  
Atmam Atmam

Power quality is closely related to electrical energy which is directly related to voltage and current interference. Electrical equipment used daily requires good power quality. The thing that affects the quality of the power is the voltage dip. Based on the IEEE 1159-1995 standard, voltage sag is a decrease in RMS voltage with duration of 0.5 cycle to 1 minute. Sag voltage that occurs can have an effect on electronic equipment and other problems that often arise in the industrial environment. Therefore, a short circuit fault analysis was conducted to determine the voltage sag based on the type of fault in the sub system in Central Sumatera. Short circuit fault analysis is done using Powerworld Simulator 7.0 Students Edition. This study is intended to determine the sag voltage when there is a short circuit fault. The biggest voltage sag occurs when a short circuit fault of single phase to ground at 75% fault location and the smallest voltage sag when the three-phase short circuit of 0.7 fault location.


2021 ◽  
Vol 19 ◽  
pp. 316-320
Author(s):  
Prasad Kumar Bandahalli Mallappa ◽  
◽  
Herminio Martínez-García ◽  
Guillermo Velasco-Quesada

In recent trends, photo-voltaic (PV) is mostly build upon competitive technological development of power quality (PQ) issues. In this article, a hybrid control strategy is implemented with multi-level inverter (MLI) to improve PQ features. As a result, the combination of these controllers with suitable level of MLI could improve the PQ features in a significant way.


2013 ◽  
Vol 60 (9) ◽  
pp. 3784-3795 ◽  
Author(s):  
Ye Zhao ◽  
Jean-Francois De Palma ◽  
Jerry Mosesian ◽  
Robert Lyons ◽  
Brad Lehman

Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to protect PV modules from damage and to eliminate risks of safety hazards. This paper focuses on line-line faults in PV arrays that may be caused by short-circuit faults or double ground faults. The effect on fault current from a maximum-power-point tracking of a PV inverter is discussed and shown to, at times, prevent overcurrent protection devices (OCPDs) to operate properly. Furthermore, fault behavior of PV arrays is highly related to the fault location, fault impedance, irradiance level, and use of blocking diodes. Particularly, this paper examines the challenges to OCPD in a PV array brought by unique faults: One is a fault that occurs under low-irradiance conditions, and the other is a fault that occurs at night and evolves during “night-to-day” transition. In both circumstances, the faults might remain hidden in the PV system, no matter how irradiance changes afterward. These unique faults may subsequently lead to unexpected safety hazards, reduced system efficiency, and reduced reliability. A small-scale experimental PV system has been developed to further validate the conclusions.


Author(s):  
Liu Yang ◽  
Qinyue Tan ◽  
Di Xiong ◽  
Zhengguang Liu

The overrun of transient power quality index caused by the large-capacity electric arc furnace (EAF) has become a prominent problem affecting the safe and stable operation of the power system. (1) In this paper, the relationship between arc furnace volt-age and current is derived based on the different stages of arc combustion, and the random variation of chaotic phenomenon of the arc voltage are simulated. Established an EAF model suitable for the study of transient power quality problems. (2) Take 50t AC EAF as an example to analyze the reactive power impact and the influence on the point of common coupling (PCC) voltage caused by the three-phase short circuit of the electrode. The results show that the experimental results are consistent with the theoretical analysis, verifying the correctness and effectiveness of the model. (3) When the three-phase short-circuit occurs, the reactive power impact is nearly 6 times that of normal operation, the short-circuit current is 2.66 times that of normal operation, and the effective value of the PCC voltage has dropped by 40.37%, which provides a theoretical basis for real-time compensation of impulsive reactive power and improvement of the transient power quality of the EAF.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243581
Author(s):  
M. F. Roslan ◽  
Ali Q. Al-Shetwi ◽  
M. A. Hannan ◽  
P. J. Ker ◽  
A. W. M. Zuhdi

The lack of control in voltage overshoot, transient response, and steady state error are major issues that are frequently encountered in a grid-connected photovoltaic (PV) system, resulting in poor power quality performance and damages to the overall power system. This paper presents the performance of a control strategy for an inverter in a three-phase grid-connected PV system. The system consists of a PV panel, a boost converter, a DC link, an inverter, and a resistor-inductor (RL) filter and is connected to the utility grid through a voltage source inverter. The main objective of the proposed strategy is to improve the power quality performance of the three-phase grid-connected inverter system by optimising the proportional-integral (PI) controller. Such a strategy aims to reduce the DC link input voltage fluctuation, decrease the harmonics, and stabilise the output current, voltage, frequency, and power flow. The particle swarm optimisation (PSO) technique was implemented to tune the PI controller parameters by minimising the error of the voltage regulator and current controller schemes in the inverter system. The system model and control strategies were implemented using MATLAB/Simulink environment (Version 2020A) Simscape-Power system toolbox. Results show that the proposed strategy outperformed other reported research works with total harmonic distortion (THD) at a grid voltage and current of 0.29% and 2.72%, respectively, and a transient response time of 0.1853s. Compared to conventional systems, the PI controller with PSO-based optimization provides less voltage overshoot by 11.1% while reducing the time to reach equilibrium state by 32.6%. The consideration of additional input parameters and the optimization of input parameters were identified to be the two main factors that contribute to the significant improvements in power quality control. Therefore, the proposed strategy effectively enhances the power quality of the utility grid, and such an enhancement contributes to the efficient and smooth integration of the PV system.


Author(s):  
Hussein Taha Hussein ◽  
Mohamed Ammar ◽  
Mohamed Moustafa Hassan

This article presents a method for fault detection and diagnosis of stator inter-turn short circuit in three phase induction machines. The technique is based on the stator current and modelling in the dq frame using an Adaptive Neuro-Fuzzy artificial intelligence approach. The developed fault analysis method is illustrated using MATLAB simulations. The obtained results are promising based on the new fault detection approach.


Author(s):  
T. NARASIMHA PRASAD ◽  
V. LAKSHMI DEVI

Solar energy has become a very potential new energy; Connected directly with grid-connected photovoltaic (PV) systems does not require bulk and lossy battery. Distributed generation and on-site supply of PV system reduces losses of transmission and distribution, and mitigates environment pollution. This paper establishes a Dynamic model of grid-connected PV system by Matlab/Simulink with d-and q-axis as coordinates which is synchronously rotating with the grid voltage to reflect the characteristics of the system accurately. Based on the accurate modeling system, optimum control and fault analysis are studied. The simulation and analysis verify the effectiveness of the proposed algorithm, and demonstrate that the proposed control system has good static performance.


Author(s):  
Jasti Venkata Ramesh Babu ◽  
Malligunta Kiran Kumar

Power quality is one big issue in power system and a big challenge for power engineers today. Electrical consumers (or otherwise load devices) expect electrical power received power should be of first-class. Bad quality in electrical power directs to fuse blowing, machine overheating, increase in distribution losses, damage to sensitive load devices and many more. DSTATCOM is one of the FACTS controllers designed to improve the quality in electrical power and thus improving the performance of distribution system. This paper presents a multilevel DSTATCOM topology to enhance power quality in power distribution system delivering high-quality power to the customer load devices. Diode-clamped structure is employed for multi-level DSTATCOM structure. ‘PQ’ based control strategy generates reference signal which is further processed through level-shifted multi-carrier PWM strategy for the generation of gate pulses to multi-level DSTATCOM structure. Simulation work of proposed system is developed and the result analysis is presented using MATLAB/SIMULINK software. Performance of multi-level DSTATCOM topology is verified with fixed and variable loads.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5638
Author(s):  
Liang Bu ◽  
Song Han ◽  
Jinling Feng

The Sen Transformer (ST) provides an economical solution for power flow control and voltage regulation. However, fault analysis and evaluation of the performance of the transmission protection system in the presence of a ST have not been investigated. Hence, a short-circuit model of the ST using the phase coordinate method is proposed in this paper. Firstly, according to the coupled-circuit ST model, the nodal admittance matrix between the sending end and receiving end of the ST was deduced. Subsequently, a fully decoupled mathematical model was established that can reflect three characteristics, including its winding connection structure, electrical parameters, and ground impedance. Thus, with the help of the phase-coordinate-based solving methodology, a short-circuit ST model may be built for various short-circuit faults. The MATLAB and PSCAD/EMTDC software were employed to carry out simulated analyses for an equivalent two-bus system. The short-circuit currents obtained from the time-domain simulation and the analytic calculation utilizing the proposed model reached an acceptable agreement, confirming the simulation’s effectiveness. Moreover, the variation of the fault currents with the variation of the compensating voltage after single-phase-to-ground and three-phase short-circuit faults was demonstrated and used to analyze the effect of the ST on the fault currents.


Sign in / Sign up

Export Citation Format

Share Document