scholarly journals Bifurcation Analysis of a Model of Cancer

2016 ◽  
Vol 12 (3) ◽  
pp. 67 ◽  
Author(s):  
Abdo M. Al-Mahdi ◽  
Mustafa Q. Khirallah

In this paper, we study the bifurcation of a cancer model with completely unknown parameters. The bifurcation analysis of the biologically feasible steady-states of this model will be discussed. It is proved that the system appears to exhibit many cases of bifurcation for some ranges of system parameters. Numerical analysis and extensive numerical examples of the bifurcation for some ranges were carried out for various system parameter values and different initial densities.

Author(s):  
HUI CAO ◽  
Dongxue Yan ◽  
Xiaxia Xu

This paper deals with an SIR model with age structure of infected individuals. We formulate the model as an abstract non-densely defined Cauchy problem and derive the conditions for the existence of all the feasible equilibrium points of the system. The criteria for both stability and instability involving system parameters are obtained. Bifurcation analysis indicates that the system with age structure exhibits Hopf bifurcation which is the main result of this paper. Finally, some numerical examples are provided to illustrate our obtained results.


1989 ◽  
Vol 199 ◽  
pp. 495-518 ◽  
Author(s):  
Z. C. Feng ◽  
P. R. Sethna

Surface waves in a nearly square container subjected to vertical oscillations are studied. The theoretical results are based on the analysis of a derived set of normal form equations, which represent perturbations of systems with 1:1 internal resonance and with D4 symmetry. Bifurcation analysis of these equations shows that the system is capable of periodic and quasi-periodic standing as well as travelling waves. The analysis also identifies parameter values at which chaotic behaviour is to be expected. The theoretical results are verified with the aid of some experiments.


2014 ◽  
Vol 22 (01) ◽  
pp. 101-121 ◽  
Author(s):  
CHUII KHIM CHONG ◽  
MOHD SABERI MOHAMAD ◽  
SAFAAI DERIS ◽  
MOHD SHAHIR SHAMSIR ◽  
LIAN EN CHAI ◽  
...  

When analyzing a metabolic pathway in a mathematical model, it is important that the essential parameters are estimated correctly. However, this process often faces few problems like when the number of unknown parameters increase, trapping of data in the local minima, repeated exposure to bad results during the search process and occurrence of noisy data. Thus, this paper intends to present an improved bee memory differential evolution (IBMDE) algorithm to solve the mentioned problems. This is a hybrid algorithm that combines the differential evolution (DE) algorithm, the Kalman filter, artificial bee colony (ABC) algorithm, and a memory feature. The aspartate and threonine biosynthesis pathway, and cell cycle pathway are the metabolic pathways used in this paper. For three production simulation pathways, the IBMDE managed to robustly produce the estimated optimal kinetic parameter values with significantly reduced errors. Besides, it also demonstrated faster convergence time compared to the Nelder–Mead (NM), simulated annealing (SA), the genetic algorithm (GA) and DE, respectively. Most importantly, the kinetic parameters that were generated by the IBMDE have improved the production rates of desired metabolites better than other estimation algorithms. Meanwhile, the results proved that the IBMDE is a reliable estimation algorithm.


2004 ◽  
Vol 14 (01) ◽  
pp. 221-243 ◽  
Author(s):  
K. THAMILMARAN ◽  
M. LAKSHMANAN ◽  
A. VENKATESAN

In this paper, we present the hyperchaos dynamics of a modified canonical Chua's electrical circuit. This circuit, which is capable of realizing the behavior of every member of the Chua's family, consists of just five linear elements (resistors, inductors and capacitors), a negative conductor and a piecewise linear resistor. The route followed is a transition from regular behavior to chaos and then to hyperchaos through border-collision bifurcation, as the system parameter is varied. The hyperchaos dynamics, characterized by two positive Lyapunov exponents, is described by a set of four coupled first-order ordinary differential equations. This has been investigated extensively using laboratory experiments, Pspice simulation and numerical analysis.


2015 ◽  
Vol 09 (01) ◽  
pp. 1650014 ◽  
Author(s):  
G. S. Mahapatra ◽  
P. Santra

This paper presents a prey–predator model considering the predator interacting with non-refuges prey by class of functional responses. Here we also consider harvesting for only non-refuges prey. We discuss the equilibria of the model, and their stability for hiding prey either in constant form or proportional to the densities of prey population. We also investigate various possibilities of bionomic equilibrium and optimal harvesting policy. Finally we present numerical examples with pictorial presentation of the various effects of the prey–predator system parameter.


2013 ◽  
Vol 756-759 ◽  
pp. 2857-2862
Author(s):  
Shun Yi Li ◽  
Wen Wu Liu

A three-stage-structured prey-predator model with multi-delays is considered. The characteristic equations and local stability of the equilibrium are analyzed, and the conditions for the positive equilibrium occurring Hopf bifurcation are obtained by applying the theorem of Hopf bifurcation. Finally, numerical examples and brief conclusion are given.


Life ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 74
Author(s):  
Andrés Montoya ◽  
Elkin Cruz ◽  
Jesús Ágreda

The goal of our research is the development of algorithmic tools for the analysis of chemical reaction networks proposed as models of biological homochirality. We focus on two algorithmic problems: detecting whether or not a chemical mechanism admits mirror symmetry-breaking; and, given one of those networks as input, sampling the set of racemic steady states that can produce mirror symmetry-breaking. Algorithmic solutions to those two problems will allow us to compute the parameter values for the emergence of homochirality. We found a mathematical criterion for the occurrence of mirror symmetry-breaking. This criterion allows us to compute semialgebraic definitions of the sets of racemic steady states that produce homochirality. Although those semialgebraic definitions can be processed algorithmically, the algorithmic analysis of them becomes unfeasible in most cases, given the nonlinear character of those definitions. We use Clarke’s system of convex coordinates to linearize, as much as possible, those semialgebraic definitions. As a result of this work, we get an efficient algorithm that solves both algorithmic problems for networks containing only one enantiomeric pair and a heuristic algorithm that can be used in the general case, with two or more enantiomeric pairs.


2007 ◽  
Vol 21 (12) ◽  
pp. 2033-2044 ◽  
Author(s):  
YANBIN ZHANG ◽  
TIANSHOU ZHOU

The synchronization problem of chaotic fractional-order Rucklidge systems is studied both theoretically and numerically. Three different synchronization schemes based on the Pecora–Carroll principle, the linear feedback control and the bidirectional coupling are proposed to realize chaotic synchronization. It is shown that such schemes can achieve the same aim for the same set of system parameter values (including fractional orders). This provides an alternate choice for applications of fractional-order dynamical systems in engineering fields.


1985 ◽  
Vol 107 (1) ◽  
pp. 106-109 ◽  
Author(s):  
J. Lyou ◽  
Z. Bien

This paper considers the problem of stabilizing a class of discrete-time large-scale interconnected systems subject to system parameter uncertainties and bounded deterministic disturbances. An adaptive scheme is devised, based on the adaptive feedback concept for stabilization of the interconnected system with uncertain system parameters and the adaptive feed-forward concept for compensation of bounded deterministic disturbances with unknown magnitudes. A condition of stability is given under which the overall adaptive system is assured to be stable. Also, a numerical example is illustrated via comptuer simulation.


Sign in / Sign up

Export Citation Format

Share Document