Symmetry-breaking bifurcations in resonant surface waves

1989 ◽  
Vol 199 ◽  
pp. 495-518 ◽  
Author(s):  
Z. C. Feng ◽  
P. R. Sethna

Surface waves in a nearly square container subjected to vertical oscillations are studied. The theoretical results are based on the analysis of a derived set of normal form equations, which represent perturbations of systems with 1:1 internal resonance and with D4 symmetry. Bifurcation analysis of these equations shows that the system is capable of periodic and quasi-periodic standing as well as travelling waves. The analysis also identifies parameter values at which chaotic behaviour is to be expected. The theoretical results are verified with the aid of some experiments.

1987 ◽  
Vol 183 ◽  
pp. 543-565 ◽  
Author(s):  
X. M. Gu ◽  
P. R. Sethna

Surface waves in a rectangular container subjected to vertical oscillations are studied. Effects of energy dissipation along the lines of Miles (1967) and the effect of surface tension are included. Sufficient conditions, for two modes to dominate the motion, are given. The analysis is along the lines of Miles (1984a) and Holmes (1986). A complete bifurcation analysis is performed, and the modal amplitudes and phases are shown to have chaotic behaviour. This result is obtained under assumptions different from those of Holmes (1986). The conclusions regarding chaotic motions are based on a theorem of šilnikov (1970).


2015 ◽  
Vol 56 (3) ◽  
pp. 233-247 ◽  
Author(s):  
RHYS A. PAUL ◽  
LAWRENCE K. FORBES

We consider a two-step Sal’nikov reaction scheme occurring within a compressible viscous gas. The first step of the reaction may be either endothermic or exothermic, while the second step is strictly exothermic. Energy may also be lost from the system due to Newtonian cooling. An asymptotic solution for temperature perturbations of small amplitude is presented using the methods of strained coordinates and multiple scales, and a travelling wave solution with a sech-squared profile is derived. The method of lines is then used to approximate the full system with a set of ordinary differential equations, which are integrated numerically to track accurately the evolution of the reaction front. This numerical method is used to verify the asymptotic solution and investigate behaviours under different conditions. Using this method, temperature waves progressing as pulsatile fronts are detected at appropriate parameter values.


1992 ◽  
Vol 46 (3) ◽  
pp. 479-495 ◽  
Author(s):  
Stephen Joe ◽  
David C. Hunt

A lattice rule is a quadrature rule used for the approximation of integrals over the s-dimensional unit cube. Every lattice rule may be characterised by an integer r called the rank of the rule and a set of r positive integers called the invariants. By exploiting the group-theoretic structure of lattice rules we determine the number of distinct lattice rules having given invariants. Some numerical results supporting the theoretical results are included. These numerical results are obtained by calculating the Smith normal form of certain integer matrices.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Shuling Yan ◽  
Xinze Lian ◽  
Weiming Wang ◽  
Youbin Wang

We investigate a modified delayed Leslie-Gower model under homogeneous Neumann boundary conditions. We give the stability analysis of the equilibria of the model and show the existence of Hopf bifurcation at the positive equilibrium under some conditions. Furthermore, we investigate the stability and direction of bifurcating periodic orbits by using normal form theorem and the center manifold theorem.


Author(s):  
Karin Mora ◽  
Alan R. Champneys ◽  
Alexander D. Shaw ◽  
Michael I. Friswell

The dynamics associated with bouncing-type partial contact cycles are considered for a 2 degree-of-freedom unbalanced rotor in the rigid-stator limit. Specifically, analytical explanation is provided for a previously proposed criterion for the onset upon increasing the rotor speed Ω of single-bounce-per-period periodic motion, namely internal resonance between forward and backward whirling modes. Focusing on the cases of 2 : 1 and 3 : 2 resonances, detailed numerical results for small rotor damping reveal that stable bouncing periodic orbits, which coexist with non-contacting motion, arise just beyond the resonance speed Ω p : q . The theory of discontinuity maps is used to analyse the problem as a codimension-two degenerate grazing bifurcation in the limit of zero rotor damping and Ω  =  Ω p : q . An analytic unfolding of the map explains all the features of the bouncing orbits locally. In particular, for non-zero damping ζ , stable bouncing motion bifurcates in the direction of increasing Ω speed in a smooth fold bifurcation point that is at rotor speed O ( ζ ) beyond Ω p : q . The results provide the first analytic explanation of partial-contact bouncing orbits and has implications for prediction and avoidance of unwanted machine vibrations in a number of different industrial settings.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianming Zhang ◽  
Lijun Zhang ◽  
Chaudry Masood Khalique

The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.


2020 ◽  
Vol 30 (16) ◽  
pp. 2050252
Author(s):  
Shujing Shi ◽  
Jicai Huang ◽  
Jing Wen ◽  
Shigui Ruan

It has been reported that COVID-19 patients had an increased neutrophil count and a decreased lymphocyte count in the severe phase and neutrophils may contribute to organ damage and mortality. In this paper, we present the bifurcation analysis of a dynamical model for the initial innate system response to pulmonary infection. The model describes the interaction between a pathogen and neutrophilis (also known as polymorphonuclear leukocytes). It is shown that the system undergoes a sequence of bifurcations including subcritical and supercritical Bogdanov–Takens bifurcations, Hopf bifurcation, and degenerate Hopf bifurcation as the parameters vary, and the model exhibits rich dynamics such as the existence of multiple coexistent periodic oscillations, homoclinic orbits, bistability and tristability, etc. Numerical simulations are presented to explain the theoretical results.


Life ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 74
Author(s):  
Andrés Montoya ◽  
Elkin Cruz ◽  
Jesús Ágreda

The goal of our research is the development of algorithmic tools for the analysis of chemical reaction networks proposed as models of biological homochirality. We focus on two algorithmic problems: detecting whether or not a chemical mechanism admits mirror symmetry-breaking; and, given one of those networks as input, sampling the set of racemic steady states that can produce mirror symmetry-breaking. Algorithmic solutions to those two problems will allow us to compute the parameter values for the emergence of homochirality. We found a mathematical criterion for the occurrence of mirror symmetry-breaking. This criterion allows us to compute semialgebraic definitions of the sets of racemic steady states that produce homochirality. Although those semialgebraic definitions can be processed algorithmically, the algorithmic analysis of them becomes unfeasible in most cases, given the nonlinear character of those definitions. We use Clarke’s system of convex coordinates to linearize, as much as possible, those semialgebraic definitions. As a result of this work, we get an efficient algorithm that solves both algorithmic problems for networks containing only one enantiomeric pair and a heuristic algorithm that can be used in the general case, with two or more enantiomeric pairs.


2020 ◽  
Vol 26 (13-14) ◽  
pp. 1119-1132 ◽  
Author(s):  
Vinciane Guillot ◽  
Arthur Givois ◽  
Mathieu Colin ◽  
Olivier Thomas ◽  
Alireza Ture Savadkoohi ◽  
...  

Experimental and theoretical results on the nonlinear dynamics of a homogeneous thin beam equipped with piezoelectric patches, presenting internal resonances, are provided. Two configurations are considered: a unimorph configuration composed of a beam with a single piezoelectric patch and a bimorph configuration with two collocated piezoelectric patches symmetrically glued on the two faces of the beam. The natural frequencies and mode shapes are measured and compared with those obtained by theoretical developments. Ratios of frequencies highlight the realization of 1:2 and 1:3 internal resonances, for both configurations, depending on the position of the piezoelectric patches on the length of the beam. Focusing on the 1:3 internal resonance, the governing equations are solved via a numerical harmonic balance method to find the periodic solutions of the system under harmonic forcing. A homodyne detection method is used experimentally to extract the harmonics of the measured vibration signals, on both configurations, and exchanges of energy between the modes in the 1:3 internal resonance are observed. A qualitative agreement is obtained with the model.


Sign in / Sign up

Export Citation Format

Share Document