Mire peat soils of the taiga and sub-taiga zones of West Siberia on a digital model of the soil map of Russia at a scale of 1 : 2 500 000 in terms of the Russian soil classification

2020 ◽  
pp. 223-240
Author(s):  
E. A. Shishkonakova ◽  
N. A. Avetov ◽  
T. V. Ananko ◽  
M. I. Gerasimova ◽  
N. V. Savitskaya

A digital version of the soil map of the Russian Federation, scale 1 : 2.5 M, is being prepared based on the analysis of the attributes of polygons with peat soils in the West-Siberian taiga and sub-taiga zones. The correction was perfomed in 795 polygons (with the total area of 179 483 km2) out of 1 711 polygons considered (with the total area of 262 204 km2). The currently formulated idea of the dominance of oligotrophic bogs in the West Siberian taiga region of mires served as the basis for suggestion to replace the mesotrophic peat soils by oligotrophic ones in 598 polygons of the total area of 87 250 km2. Similarly, the polygons of microcatenas comprising oligotrophic and mesotrophic peat soils (57 polygons, total area of 38 405 km2) were modified: only oligotrophic peat soils were considered to be the dominant ones there. At the same time, a number of polygons with prevailing oligotrophic soils, confined mainly to the sub-taiga zone were proposed to be replaced by polygons with mesotrophic peat soils. The thermokarst pools in ridge-hollow mire complexes that were shown on the soil map of Russia beyond the permafrost zone were eliminated from the map database; the mapping of destructive peat soils was rearranged in accordance with the new interpretation of this taxon in the Russian soil classification. This work should improve the quality of research in the field of assessing the resource potential of peat soils in West Siberia.

2016 ◽  
pp. 61-74 ◽  
Author(s):  
E. A. Shishkonakova ◽  
N. A. Avetov ◽  
T. Yu. Tolpysheva

In this paper we consider plant (geobotanical) indicators of soils, occurring in regressive bogs in the north taiga subzone of West Siberia. The specificity of regressive bogs is the difference between current vegetation and botanical composition of the peat surface horizon, which complicates their biological diagnostics. The data on peat botanical composition, degree of decomposition and thickness are presented. Destructive oligotrophic peat soils, the allocation of which is provided in the actual Russian soil classification at the level of subtype, occur in palsa bogs under shrub-lichen vegetation. Their indicators include lichens: Cladonia stellaris, C. rangiferina, C. stygia, C. arbuscula, C. mitis, Alectoria ochroleuca, Сetraria islandica, C. laevigata, Flavocetraria cucullata, F. nivalis, Govardia nigricans. A new subtype - peat oligotrophic regressive soils - which occurs in non-freezing bog is suggested. The indicators of this soil subtype in pine-shrub-sphagnum bogs are lichens Cladonia cenotea, C. chlorophaea, C. coniocraea, C. cornuta, C. crispata, C. deformis, C. gracilis, C. fimbriata, C. mitis, C. ochrochlora, C. pleurota, C. polydactyla, C. pyxidata, C. rangiferina, C. stellaris, C. subulata, C. sulphurina and liverwort Mylia anomala . The indicators of regressive soils in bog hollows are mainly liverwort Cladopodiella fluitans , mosses Warnstorfia fluitans , W. exannulata , and lichen Cetrariella delisei .


2021 ◽  
pp. 5-30
Author(s):  
N. V. Savitskaya ◽  
T. V. Ananko ◽  
M. I. Gerasimova

The development of the digital model of the soil map of Russia derived of the map of the Soviet Russian Federation, 1988, compiled in Dokuchaev Soil Science Institute, comprises the transfer of soil names in the initial legend to those in the new classification system of Russian soils (2004). Floodplain soils (only native) are represented by seven legend units (out of 205) that were named in terms of soil classification of USSR, 1977, and part of their names indicated ‘landscapes’ rather than soils, which disagrees with the principles of the new classification system. Basing on numerous publications and following the rules of the new system, soils were renamed. Most of them were referred to alluvial soil types within the synlithogenic trunk (Fluvisols), and their new names indicate both their properties and their zonal attachment. In order to obtain more adequate patterns of soils in river valleys additional soils were introduced including stratified-alluvial soils in the trunk of primary pedogenesis (Regosols). Simultaneously, the composition of polygons in the database was revised in accordance with regional data; human-modified soils were introduced (agro-soils and urbo-soils). 


2016 ◽  
pp. 55-88
Author(s):  
O. V. Lavrinenko ◽  
N. V. Matveyeva ◽  
I. A. Lavrinenko

There are few publications on the classification of vegetation of Scheuchzerio–Caricetea nigrae class in the Arctic (Daniёls, 1982; Matveyeva, 1994; Zanokha, 2003). In Russia classification of mires is more or less well designed for the taiga zone of the European North and the West Siberia. Communities of sedge-hypnum mires and sedge-sphagnum hollows of flat palsa-bogs in the East European tundra are described in the dominant classification traditions (Andreev, 1932; Bogdanovskaya-Gienef, 1938; Dedov, 2006). N. Yа. Katz (1936) briefly described the vegetation of the Arctic mineral sedge mires on the Vaygach Island. In present paper the results of the mires classification carried out upon the basis of 148 relevés made in 1998–2014 in 26 sites in the East European tundra along the latitudinal gradient from typical tundra to northern forest-tundra.


2018 ◽  
pp. 58-70 ◽  
Author(s):  
M. I. Gerasimova ◽  
T. V. Ananko ◽  
D. E. Konyushkov

The analysis of the Soil Map of the Russian Federation (1 : 2.5 M scale, 1988) with identification of soils shown in each polygon in categories of the classification system of Russian soils (2004, 2008) is the first stage of work on creating the new digital soil map of Russia. It demonstrated the need to introduce a number of amendments to the classification system. They concern the definitions and names of diagnostic horizons and diagnostic features of soils. Thus, it is suggested that the mucky–dark humus horizon AH should be renamed as the mucky–humus horizon (as its properties do not fit the definition of the dark humus horizon in the system). Several new diagnostic features are introduced; for permafrost-affected soils, supra-permafrost accumulation of organic matter is designated by symbol cro. It is also suggested that the lists of soils at the subtype level, which reflects the development of certain diagnostic features, should be more flexible without their "rigid" linking to the given types. The aim of these changes is to reflect the accumulated information on the diversity of soils in Russia as displayed on the Soil Map of the Russian Federation (1988) and in the State Register of Soil Resources more adequately in the new classification system of Russian soils.


2020 ◽  
Vol 54 (2) ◽  
pp. 387-396
Author(s):  
I. V. Stavishenko

The paper provides data on records of 29 species of aphyllophoroid fungi new for the the Khanty-Mansi Autonomous Area — Yugra. Among them 10 species (Amaurodon cyaneus, Amyloxenasma allantosporum, Asterostroma laxum, Byssoporia terrestris, Paullicorticium pearsonii, Pseudomerulius montanus, Sistotrema sernanderi, Skeletocutis alutacea, S. ochroalba, Tubulicrinis orientalis) are published for the first time for Siberia, and 3 species (Scytinostroma praestans, Tomentellopsis zygodesmoides, Tubulicrinis strangulatus) are new for the West Siberia. Data on their locations, habitats and substrates in region are indicated. The specimens are kept in the Museum of the Institute of Plant and Animal Ecology of the Ural Branch of the RAS (SVER).


2015 ◽  
pp. 26-30
Author(s):  
A. V. Podnebesnykh ◽  
S. V. Kuznetsov ◽  
V. P. Ovchinnikov

On the example of the group of fields in the West Siberia North the basic types of secondary changes in reservoir rocks are reviewed. Some of the most common types of such changes in the West Siberian plate territory include the processes of zeolitization, carbonation and leaching. These processes have, as a rule, a regional character of distribution and are confined to the tectonically active zones of the earth's crust. Due to formation of different mineral paragenesises the secondary processes differently affect the reservoir rocks porosity and permeability: thus, zeolitization and carbonization promote to reducing the porosity and permeability and leaching improvement. All this, ultimately leads to a change of the oil recovery factor and hydrocarbons production levels. Study and taking into account of the reservoir rocks secondary change processes can considerably influence on placement of operating well stock and on planning of geological and technological actions.


2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Dulce Romero-Ayuso ◽  
Cristian Cuerda ◽  
Carmen Morales ◽  
Ricardo Tesoriero ◽  
José Matías Triviño-Juárez ◽  
...  

Cognitive dysfunction affects the performance of Activities of Daily Living (ADL) and the quality of life of people with these deficits and their caregivers. To the knowledge of the authors, to date, there are few studies that focus on knowing the relationship between personal autonomy and deductive reasoning and/or categorization skills, which are necessary for the performance of the ADL. The aim of this study was to explore the relationships between ADL and categorization skills in older people. The study included 51 participants: 31 patients with cognitive impairment and 20 without cognitive impairment. Two tests were administered to assess cognitive functions: (1) the Montreal Cognitive Assessment (MoCA); and (2) the digital version of Riska Object Classification test (ROC-d). In addition, the Routine Tasks Inventory-2 (RTI-2) was applied to determine the level of independence in activities of daily living. People with cognitive impairment performed poorly in categorization tasks with unstructured information (p = 0.006). Also, the results found a high correlation between cognitive functioning and the performance of ADLs (Physical ADL: r = 0.798; p < 0.001; Instrumental ADL: r = 0.740; p < 0.001), a moderate correlation between Physical ADLs and categorization skills (unstructured ROC-d: r = 0.547; p < 0.001; structured ROC-d: r = 0.586; p < 0.001) and Instrumental ADLs and categorization skills in older people (unstructured ROC-d: r = 0.510; p < 0.001; structured ROC-d: r = 0.463; p < 0.001). The ROC-d allows the assessment of categorization skills to be quick and easy, facilitating the assessment process by OT, as well as the accuracy of the data obtained.


2009 ◽  
Vol 42 (9) ◽  
pp. 967-975 ◽  
Author(s):  
V. D. Tonkonogov ◽  
I. I. Lebedeva ◽  
M. I. Gerasimova ◽  
S. F. Khokhlov

Sign in / Sign up

Export Citation Format

Share Document