scholarly journals Concomitant Single Vessel Coronary Revascularization and Single Lung Transplant in an Elderly Patient with End-Stage Idiopathic Pulmonary Fibrosis and Reduced Ejection Fraction

2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Wendy K. Bernstein ◽  
Bianca M. Conti
2020 ◽  
Vol 17 ◽  
pp. 147997312095842
Author(s):  
Elisabetta Balestro ◽  
Gioele Castelli ◽  
Nicol Bernardinello ◽  
Elisabetta Cocconcelli ◽  
Davide Biondini ◽  
...  

Idiopathic pulmonary fibrosis presents a progressive and heterogeneous functional decline. CA 19-9 has been proposed as biomarker to predict disease course, but its role remains unclear. We assessed CA 19-9 levels and clinical data in end-stage ILD patients (48 IPF and 20 non-IPF ILD) evaluated for lung transplant, to correlate these levels with functional decline. Patients were categorized based on their rate of functional decline as slow (n = 20; ΔFVC%pred ≤ 10%/year) or rapid progressors (n = 28; ΔFVC%pred ≥ 10%/year). Nearly half of the entire patients (n = 32; 47%) had CA 19-9 levels ≥37kU/L. CA 19-9 levels in IPF were not different from non-IPF ILD populations, however, the latter group had a median CA 19-9 level above the normal cut-off value of 37 KU/l (60 [17–247] kU/L). Among IPF patients, CA 19-9 was higher in slow than in rapid progressors with a trend toward significance (33vs17kU/L; p = 0.055). In the whole population, CA19-9 levels were inversely related with ΔFVC/year (r = −0.261; p = 0.03), this correlation remained in IPF patients, particularly in rapid progressors (r = −0.51; p = 0.005), but not in non. Moreover, IPF rapid progressors with normal CA 19-9 levels showed the greater ΔFVC/year compared to those with abnormal CA 19-9 (0.95 vs. 0.65 L/year; p = 0.03). In patients with end-stage ILD, CA 19-9 may represent a marker of disease severity, whereas its level is inversely correlated with functional decline, particularly among IPF rapid progressors.


2020 ◽  
Vol 7 (1) ◽  
pp. e000566 ◽  
Author(s):  
Evgeni Gershman ◽  
Alona Zer ◽  
Barak Pertzov ◽  
Osnat Shtraichman ◽  
Dorit Shitenberg ◽  
...  

BackgroundPatients with idiopathic pulmonary fibrosis (IPF) have significantly higher incidence of lung cancer (LC) relative to the general population. There is a further increase in LC incidence in patients with IPF subsequent to lung transplant, specifically in patients with IPF undergoing single lung transplant.ObjectivesTo examine the incidence and characteristics of LC in patients with IPF during follow-up and after lung transplantation (LTX).MethodsWe conducted a retrospective analysis of all patients with IPF diagnosed with LC in Rabin Medical Center, Israel, over an 11-year period. We compared the characteristics of transplanted patients with IPF diagnosed with LC to patients with IPF who did not undergo lung transplant. Data were accessed from database registries using the words ‘fibrosis’, ‘lung-cancer’ and ‘lung-transplantation’. Demographic parameters included age, gender and smoking history (pack years). Clinical-pathological parameters included lapse in time from IPF diagnosis to LC, type of malignancy, affected pulmonary lobe, and stage at diagnosis, oncological treatment and survival.ResultsBetween 2008 and 2018, 205 patients with IPF underwent lung transplantation at our medical centre. Double LTX was performed in 83 and single LTX in 122 cases. Subsequently, 15 (12.3%) single LTX patients were diagnosed with LC during the study period. During the same period, of 497 non-transplanted patients with IPF followed in our centre, 45 (9.1%) were diagnosed with LC. In all 15 transplanted patients with IPF, LC was diagnosed exclusively in the native fibrotic lung. LC incidence was higher in the transplanted as compared with the non-transplanted group, but this difference did not reach statistical significance (OR=0.7, 95% CI 0.38 to 1.32, p=0.28). At LC diagnosis, the non-transplanted group was older than the transplanted group with average age of 67.7 versus 60.8 years, respectively (p=0.006). Both groups showed male predominance. In both groups, LC was primarily peripheral, lower lobe predominant and most frequently squamous cell carcinoma. The median survival time after LC diagnosis was 4 months in the transplanted group and 11 months in the non-transplanted group (p=0.19). Multivariate analysis showed improved survival in the non-transplanted group among those patients who received oncological treatment.ConclusionChest CT should be performed regularly in order to evaluate IPF patients for potential LC. Single lung transplant IPF patients face an increased risk of post-transplant LC in the native fibrotic lung. Where practicable, IPF patients should be prioritised for double lung transplant.


2021 ◽  
Vol 41 (2) ◽  
pp. 193-196
Author(s):  
Shunsuke Kiuchi ◽  
Shinji Hisatake ◽  
Takayuki Kabuki ◽  
Takashi Oka ◽  
Takahiro Fujii ◽  
...  

2019 ◽  
Vol 5 (3) ◽  
pp. 00117-2019 ◽  
Author(s):  
Pitchumani Sivakumar ◽  
John Ryan Thompson ◽  
Ron Ammar ◽  
Mary Porteous ◽  
Carly McCoubrey ◽  
...  

Idiopathic pulmonary fibrosis (IPF), the scarring of lung parenchyma resulting in the loss of lung function, remains a fatal disease with a significant unmet medical need. Patients with severe IPF often develop acute exacerbations resulting in the rapid deterioration of lung function, requiring transplantation. Understanding the pathophysiological mechanisms contributing to IPF is key to develop novel therapeutic approaches for end-stage disease.We report here RNA-sequencing analyses of lung tissues from a cohort of patients with transplant-stage IPF (n=36), compared with acute lung injury (ALI) (n=11) and nondisease controls (n=19), that reveal a robust gene expression signature unique to end-stage IPF. In addition to extracellular matrix remodelling pathways, we identified pathways associated with T-cell infiltration/activation, tumour development, and cholesterol homeostasis, as well as novel alternatively spliced transcripts that are differentially regulated in the advanced IPF lung versus ALI or nondisease controls. Additionally, we show a subset of genes that are correlated with percent predicted forced vital capacity and could reflect disease severity.Our results establish a robust transcriptomic fingerprint of an advanced IPF lung that is distinct from previously reported microarray signatures of moderate, stable or progressive IPF and identifies hitherto unknown candidate targets and pathways for therapeutic intervention in late-stage IPF as well as biomarkers to characterise disease progression and enable patient stratification.


2014 ◽  
Vol 146 (5) ◽  
pp. S-855-S-856
Author(s):  
Sravanya Gavini ◽  
Raymond T. Finn ◽  
Wai-Kit Lo ◽  
Hilary J. Goldberg ◽  
Robert Burakoff ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wim A. Wuyts ◽  
Caroline Dahlqvist ◽  
Hans Slabbynck ◽  
Marc Schlesser ◽  
Natacha Gusbin ◽  
...  

Abstract Background The PROOF registry is an observational study initiated in October 2013 with the aim to monitor disease progression in a real-world population of patients with idiopathic pulmonary fibrosis (IPF). Here, we present longitudinal clinical outcomes from the PROOF registry. Methods Patients with IPF were enrolled across eight centers in Belgium and Luxembourg. For all patients, clinical outcomes data were collected, including mortality, lung transplant, acute exacerbations, and pulmonary hypertension. For patients treated with pirfenidone at any time during follow-up (2013–2017), for any duration of treatment (the pirfenidone-treated population): pirfenidone treatment patterns were collected; changes in pulmonary function (forced vital capacity [FVC] and carbon monoxide diffusing capacity [DLco]) were reviewed up to 24 months post-inclusion; and time-to-event analyses from the time of registry inclusion were performed. Results The PROOF registry enrolled a total of 277 patients. During follow-up, 23.1% of patients died, 5.1% received a lung transplant, 5.4% experienced an acute exacerbation, and 6.1% had comorbid pulmonary hypertension. In the pirfenidone-treated population (N = 233, 84.1%), 12.9% of patients had a temporary dose discontinuation and 31.8% had a temporary dose reduction; 4.3% of patients permanently discontinued pirfenidone due to an adverse drug reaction. Mean percent predicted FVC was 81.2% (standard deviation [SD] 19.0) at Month 0 and 78.3% (SD 25.0) at Month 24, and mean percent predicted DLco was 47.0% (SD 13.2) and 45.0% (SD 16.5), respectively. Rates of ≥ 10% absolute decline in percent predicted FVC and ≥ 15% absolute decline in percent predicted DLco over 24 months were 31.0% and 23.2%, respectively. Mean times from registry inclusion to categorical absolute decline in percent predicted FVC and percent predicted DLco were 20.1 (standard error [SE] 0.6) months and 23.4 (SE 0.5) months, respectively; mean time from registry inclusion to death was 31.0 (SE 0.9) months. Conclusions The PROOF registry is a source of European data characterizing longitudinal clinical outcomes of patients with IPF. Over 12 months of follow-up, pulmonary function remained largely stable in patients with IPF who received pirfenidone for any duration of treatment. Pulmonary function remained similar at 24 months of follow-up, although patient numbers were lower. Trial registration PROOF is registered with the relevant authorities in Belgium and Luxembourg, with registration to Comité National d’Éthique et de Recherche (CNER) N201309/03–12 September 2013 and a notification to Comité National de Protection des Données (CNDP) for Luxembourg.


Sign in / Sign up

Export Citation Format

Share Document