scholarly journals A Bivariate Gamma Distribution Whose Marginals are Finite Mixtures of Gamma Distributions

2020 ◽  
Vol 8 (4) ◽  
pp. 950-971
Author(s):  
Maryam Rafiei ◽  
Anis Iranmanesh ◽  
Daya k. Nagar

In this article a new bivariate distribution, whose both the marginals are finite mixture of gamma distribution has been defined. Several of its properties such moments, correlation coefficients, measure of skewness, moment generating function, Renyi and Shannon entropies have been derived. Simulation study have been conducted to evaluate the performance of maximum likelihood method.

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 438 ◽  
Author(s):  
Hadeel S. Klakattawi

A new member of the Weibull-generated (Weibull-G) family of distributions—namely the Weibull-gamma distribution—is proposed. This four-parameter distribution can provide great flexibility in modeling different data distribution shapes. Some special cases of the Weibull-gamma distribution are considered. Several properties of the new distribution are studied. The maximum likelihood method is applied to obtain an estimation of the parameters of the Weibull-gamma distribution. The usefulness of the proposed distribution is examined by means of five applications to real datasets.


2020 ◽  
Vol 8 (10) ◽  
pp. 236-248
Author(s):  
Rwabi AzZwideen ◽  
Loai M. Al Zou’bi

This article introduces a four-parameter probability model which represents a gener- alization of the the Gamma-Gompertz distribution using the quadratic rank trans- mutation map. The proposed model is named the Transmuted Gamma-Gompertz distribution. We provide explicit expressions for its statistical properties, moment generating function, quantile function, the order statistics, the quantile function and the median. We estimate the parameters of the distribution using the maximum likelihood method of estimation.


Author(s):  
Jamilu Yunusa Falgore ◽  
Sani Ibrahim Doguwa

A new generator of continuous distributions called the Inverse Lomax-Exponentiated G family, which has three extra positive parameters is proposed. The structural properties of the new family that holds for any continuous baseline model including explicit density function expressions, moments, inequality measurements, moment generating function, reliability functions, Renyi and Shanon entropies, and distribution of order statistics are derived. A Monte Carlo simulation to test the efficiency of the maximum likelihood estimates is conducted. The application of the new sub-model to the two data sets using the maximum likelihood method indicates that the new model is better than the existing competitors.


Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Ibrahim Elbatal ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy ◽  
Sharifah Alrajhi

In this paper, we introduce a new continuous probability distribution with five parameters called the modified beta Gompertz distribution. It is derived from the modified beta generator proposed by Nadarajah, Teimouri and Shih (2014) and the Gompertz distribution. By investigating its mathematical and practical aspects, we prove that it is quite flexible and can be used effectively in modeling a wide variety of real phenomena. Among others, we provide useful expansions of crucial functions, quantile function, moments, incomplete moments, moment generating function, entropies and order statistics. We explore the estimation of the model parameters by the obtained maximum likelihood method. We also present a simulation study testing the validity of maximum likelihood estimators. Finally, we illustrate the flexibility of the distribution by the consideration of two real datasets.


Author(s):  
Benjamin Apam ◽  
Nasiru Suleman ◽  
Emmanuel Adjei

In this article, we introduce the Lomax-Weibull (LoW) distribution using the method of composition of CDFs from the Lomax and Weibull distributions. Expressions for the moment generating function, hazard and survival functions were derived. A plot of the probability distribution function and cumulative distributions were done using the Python software. We also used the maximum likelihood method of estimation to derive the score functions for estimating the parameters of the distribution.


Sign in / Sign up

Export Citation Format

Share Document