scholarly journals Aging of engine oils and their influence on the wear of an internal combustion engine

2021 ◽  
Author(s):  
Marek Idzior

New designs of internal combustion engines require the use of engine oils that can cope with more demanding conditions, primarily with greater loads and higher temperatures. The requirements of recent years have led to a wider use of modern base oils and specially designed additive packages. This avoids the formation of impurities and changes in viscosity as a result of shearing of the viscosity additives under high loads. The article discusses the important problem of oil aging during operation and the impact of this phenomenon on the operation of internal combustion engines. The influence of oil service life and its replacement on the emission of toxic exhaust gas components was discussed, and the results of research on the effect of oil service life on changes in their viscosity were presented.

2019 ◽  
Vol 179 (4) ◽  
pp. 119-125
Author(s):  
Przemysław MĘŻYK ◽  
Grzegorz PRZYBYŁA ◽  
Karolina PETELA

The propulsion system of a vehicle using an internal combustion engine generates a significant amount of waste heat during operation, which is almost entirely discharged into the environment without any useful effect. One of the ways of using waste heat is storing it, and then using, for example, when starting the engine in winter conditions. The application of the indicated solution, in particular for the combat vehicle will allow to reduce the effects of cold start and will shorten the time of preparing such a vehicle for combat operations. The article presents: types of heat accumulators that could be used in a military vehicle, the results of preliminary tests carried out on the test stand and the impact of an additional heat source on the time of heating the internal combustion engine and on emission of exhaust gas components.


Author(s):  
Толмачев ◽  
D. Tolmachev ◽  
Голубенко ◽  
Natalya Golubenko

The article describes some of chemmotology processes in systems: engine oil – elements of internal combustion engines. Motor oil is regarded as an important element in the construction of an internal combustion engine, and it is necessary to make quantitative description of its condition which changing over time for its operability forecasting. In connection with the increasing number of vehicles with gas engines, the topics of necessity of special engine oils use for the gas internal combustion engine and of monitoring of their quality indicators are mentioned


2020 ◽  
Vol 67 (1) ◽  
pp. 104-110
Author(s):  
Aleksandr V. Gritsenko ◽  
Grigoriy N. Salimonenko ◽  
Maksim V. Nazarov

The introduction of methods for timely diagnostics of internal combustion engines allows maintaining the environmental indicators of the car fleet at the highest level. (Research purpose) The research purpose is in increasing the reliability of diagnostics of internal combustion engines by using data obtained by selective sampling of exhaust gases. (Materials and methods) Informational, mathematical and experimental research methods, including methods for statistical processing of results and analysis of data obtained during experiments were used during the study. (Results and discussion) The main systems that affect the environmental performance of internal combustion engines has been identified: the fuel supply system, the ignition system and the exhaust gas neutralization system. The article describes a generalized mathematical model for calculating the characteristics of exhaust gases. Authors conducted operational tests on 35 internal combustion engines with justification of their number according to standard methods. The actual value of diagnostic parameters was processed into relative percentages for drawing a nomogram. A zero value has been set for the reference state of the elements specified by the manufacturer. (Conclusions) It was found that the dominant number of failures accounted for internal combustion engines, in detail: the ignition system produces 15-25 percent of failures, the power system produces 30-44 percent, the exhaust system produces 10-15 percent. It was found that for unambiguous identification of any combination of factors, it is necessary to have output values of at least three evaluation criteria. It was found that the most sensitive parameters for evaluating the technical condition of the three systems are: changes in the engine crankshaft speed, the parameters of exhaust gas toxicity, CO, CO2, CH, O2 when providing test modes (operation of the internal combustion engine on 1 cylinder at 20 and 40 percent of the throttle opening). The article describes designed a gasoline engine loader for the implementation of diagnostic modes and control of diagnostic parameters, that allows to create operating loads with an accuracy of 0.1 percent.


2019 ◽  
Vol 178 (3) ◽  
pp. 182-186
Author(s):  
Zbigniew SROKA ◽  
Maciej DWORACZYŃSKI

The modification of the downsizing trend of internal combustion engines towards rightsizing is a new challenge for constructors. The change in the displacement volume of internal combustion engines accompanying the rightsizing idea may in fact mean a reduction or increase of the defining swept volume change factors and thus may affect the change in the operating characteristics as a result of changes in combustion process parameters - a research problem described in this publication. Incidents of changes in the displacement volume were considered along with the change of the compression space and at the change of the geometric degree of compression. The new form of the mathematical dependence describing the efficiency of the thermodynamic cycle makes it possible to evaluate the opera-tion indicators of the internal combustion engine along with the implementation of the rightsizing idea. The work demonstrated the in-variance of cycle efficiency with different forms of rightsizing.


2021 ◽  
Vol 4 (30) ◽  
pp. 99-105
Author(s):  
A. V. Summanen ◽  
◽  
S. V. Ugolkov ◽  

This article discusses the issues of assessing the technical condition of the camshaft, internal combustion engine. The necessary parameters for assessing the technical condition of the engine camshaft have been determined. How and how to measure and calculate this or that parameter is presented in detail. Methods for calculating the parameters are presented. A scheme and method for measuring neck wear, determining the height of the cam, determining the beating of the central journal of the camshaft are proposed. The main defects of the camshafts are presented. The issues of the influence of these parameters on the operability of the camshaft and the internal combustion engine as a whole are considered.


2021 ◽  
pp. 13-20
Author(s):  

The prospects of using the gas-static suspension of the internal combustion engine piston in transport vehicles and power plants are considered. The diagram of the piston and the method for calculating the stiffness and bearing capacity of the gas layer surrounding the piston are presented, as well as the results of experiments that showed the relevance of this method. The possibility of gas and static centering of the engine piston is confirmed. Keywords: internal combustion engine, piston, gasstatic suspension, stiffness, bearing capacity, gas medium. [email protected]


2019 ◽  
pp. 146808741989358 ◽  
Author(s):  
Mostafa A ElBahloul ◽  
ELsayed S Aziz ◽  
Constantin Chassapis

Fuel conversion efficiency is one of the main concerns in the field of internal combustion engine systems. Although the Otto cycle delivers the maximum efficiency possible in theory, the kinematics of the slider–crank mechanism of the conventional internal combustion engines makes it difficult to reach this level of efficiency in practice. This study proposes using the unique hypocycloid gear mechanism instead of the conventional slider–crank mechanism for the internal combustion engines to increase engine efficiency and minimize frictional power losses. The hypocycloid gear mechanism engine’s kinematics provides the means for the piston-rod assembly to reciprocate in a straight-line motion along the cylinder axis besides achieving a nonlinear rate of piston movement. As a result, this characteristic allows for a true constant-volume combustion, which in turn would lead to higher work output. An in-cylinder gas volume change model of the hypocycloid gear mechanism engine was developed and incorporated into the thermodynamic model for the internal combustion engine cycle. The thermodynamic model of the hypocycloid gear mechanism engine was developed and simulated using MATLAB/Simulink software. A comparison between the conventional engine and the hypocycloid gear mechanism engine in terms of engine performance characteristics showed the enhancements achieved using hypocycloid gear mechanism for internal combustion engine applications. The hypocycloid gear mechanism engine analysis results indicated higher engine efficiency approaching that of the Otto cycle.


2019 ◽  
Vol 11 (23) ◽  
pp. 6585 ◽  
Author(s):  
Markiewicz ◽  
Muślewski

The application of fuels from renewable energy sources for combustion engine powering involves a great demand for this kind of energy while its production infrastructure remains underdeveloped. The use of this kind of fuel is supposed to reduce the emission of greenhouse gases and the depletion of natural resources and to increase the share of renewable energy sources in total energy consumption and thus support sustainable development in Europe. This study presents the results of research on selected performance parameters of transport by internal combustion engines including: power, torque, the emission of sound generated by the engine, the content of exhaust components (oxygen O2, carbon monoxide CO, carbon dioxide CO2, nitrogen dioxide NO2), and the content of particulate matter (PM) in exhaust emission. Three self-ignition engines were tested. The fuel injection controllers of the tested internal combustion engines were additionally adjusted by increasing the fuel dose and the load of air. The material used in the tests were mixtures of diesel oil and fatty acid methyl esters of different concentration. A statistical analysis was performed based of the results. The purpose of the work was to develop a resulting model for assessing the operation of engines fueled with biofuel and diesel mixtures while changing the vehicle's computer software. A computer simulation algorithm was also developed for the needs of the tests which was used to prognose the state of the test results for variable input parameters.


1980 ◽  
Vol 194 (1) ◽  
pp. 157-169
Author(s):  
L. C. Hall ◽  
M. E. Saatci

This paper reports on a study into the feasibility of generating steam, using the exhaust gases of a reciprocating internal combustion engine, and expanding it in the cylinders of the engine to produce additional power without increasing the fuel consumption. The study was conducted in three stages; firstly an equivalent ideal thermodynamic cycle was analysed to examine the fundamental principles, secondly a computer simulation was carried out based on a particular engine, and thirdly an attempt was made to modify the engine and run it with steam injection. The results suggest that this proposal is thermodynamically sound and could in practice permit substantial gains in efficiency using relatively straightforward technology.


Sign in / Sign up

Export Citation Format

Share Document