Prospects of the use of electronic fuel control system for single-shaft gas turbine power unit

2015 ◽  
pp. 101-105
Author(s):  
Alexander Alexeyevich Belskiy ◽  
2012 ◽  
Vol 503-504 ◽  
pp. 1633-1638 ◽  
Author(s):  
Melih Cemal Kushan ◽  
Zhong Xiao Peng ◽  
Shu Zhi Peng

One of the key elements of servicing the aviation industry is the provision and maintenance of first class equipment. In order to ensure a secure and effective flight of aircrafts in aviation, the ground supporting equipment which enables the planes to get off the ground without delaying the flight plans, has to be kept ready at all times [1].


1991 ◽  
Vol 113 (2) ◽  
pp. 290-295 ◽  
Author(s):  
H. Kumakura ◽  
T. Matsumura ◽  
E. Tsuruta ◽  
A. Watanabe

A control system has been developed for a high-quality generating set (150-kW) equipped with a two-shaft gas turbine featuring a variable power turbine nozzle. Because this generating set satisfies stringent frequency stability requirements, it can be employed as the direct electric power source for computer centers without using constant-voltage, constant-frequency power supply systems. Conventional generating sets of this kind have normally been powered by single-shaft gas turbines, which have a larger output shaft inertia than the two-shaft version. Good frequency characteristics have also been realized with the two-shaft gas turbine, which provides superior quick start ability and lower fuel consumption under partial loads.


2021 ◽  
Author(s):  
Thomas Bronson ◽  
Rudy Dudebout ◽  
Nagaraja Rudrapatna

Abstract The aircraft Auxiliary Power Unit (APU) is required to provide power to start the main engines, conditioned air and power when there are no facilities available and, most importantly, emergency power during flight operation. Given the primary purpose of providing backup power, APUs have historically been designed to be extremely reliable while minimizing weight and fabrication cost. Since APUs are operated at airports especially during taxi operations, the emissions from the APUs contribute to local air quality. There is clearly significant regulatory and public interest in reducing emissions from all sources at airports, including from APUs. As such, there is a need to develop technologies that reduce criteria pollutants, namely oxides of nitrogen (NOx), unburned hydrocarbons (UHC), carbon monoxide (CO) and smoke (SN) from aircraft APUs. Honeywell has developed a Low-Emissions (Low-E) combustion system technology for the 131-9 and HGT750 family of APUs to provide significant reduction in pollutants for narrow-body aircraft application. This article focuses on the combustor technology and processes that have been successfully utilized in this endeavor, with an emphasis on abating NOx. This paper describes the 131-9/HGT750 APU, the requirements and challenges for small gas turbine engines, and the selected strategy of Rich-Quench-Lean (RQL) combustion. Analytical and experimental results are presented for the current generation of APU combustion systems as well as the Low-E system. The implementation of RQL aerodynamics is well understood within the aero-gas turbine engine industry, but the application of RQL technology in a configuration with tangential liquid fuel injection which is also required to meet altitude ignition at 41,000 ft is the novelty of this development. The Low-E combustion system has demonstrated more than 25% reduction in NOx (dependent on the cycle of operation) vs. the conventional 131-9 combustion system while meeting significant margins in other criteria pollutants. In addition, the Low-E combustion system achieved these successes as a “drop-in” configuration within the existing envelope, and without significantly impacting combustor/turbine durability, combustor pressure drop, or lean stability.


Author(s):  
Mahmood Lahroodi ◽  
A. A. Mozafari

Neural networks have been applied very successfully in the identification and control of dynamic systems. When designing a control system to ensure the safe and automatic operation of the gas turbine combustor, it is necessary to be able to predict temperature and pressure levels and outlet flow rate throughout the gas turbine combustor to use them for selection of control parameters. This paper describes a nonlinear SVFAC controller scheme for gas turbine combustor. In order to achieve the satisfied control performance, we have to consider the affection of nonlinear factors contained in controller. The neural network controller learns to produce the input selected by the optimization process. The controller is adaptively trained to force the plant output to track a reference output. Proposed Adaptive control system configuration uses two neural networks: a controller network and a model network. The model network is used to predict the effect of controller changes on plant output, which allows the updating of controller parameters. This paper presents the new adaptive SFVC controller using neural networks with compensation for nonlinear plants. The control performance of designed controller is compared with inverse control method and results have shown that the proposed method has good performance for nonlinear plants such as gas turbine combustor.


1989 ◽  
Vol 111 (1) ◽  
pp. 181-185
Author(s):  
M. S. Beaton

FELTMETAL® fiber metal acoustic materials function as broad band acoustic absorbers. Their acoustic energy absorbance occurs through viscous flow losses as sound waves pass through the tortuous pore structure of the material. A new FELTMETAL® fiber metal acoustic material has been designed for use in gas turbine auxiliary power unit exhaust environments without supplemental cooling. The physical and acoustic properties of FM 827 are discussed. Exposure tests were conducted under conditions that simulated auxiliary power unit operation. Weight gain and tensile strength data as a function of time of exposure at 650°C (1202°F) are reported. Fabrication of components with fiber metal acoustic materials is easily accomplished using standard roll forming and gas tungsten arc welding practices.


Author(s):  
Kai Peng ◽  
Fan Yang ◽  
Ding Fan ◽  
Linfeng Gou ◽  
Hongliang Xiao ◽  
...  

A helicopter auxiliary power unit (APU) is initially equipped with a hydro-mechanical control system (HMC). Because HMC's complex structure is difficult to be modified to realize sophisticated control algorithms and the APU is faced with the need for performance improvement, it is urgently necessary to carry out digital control modification of HMC. Based on the analysis of control laws of the original HMC and differences between HMC and digital control system, key techniques involved in the digital control system are studied, such as overall structure, control laws and fuel system based on electric fuel pump, and finally a full authority digital electronic control system (FADEC) is developed for APU. Functions, performances and key techniques of the FADEC system are evaluated on test rig, and the test results show functions of original control system are enhanced and performances of APU are improved more effectively under the control of the designed FADEC compared with the original HMC.


2020 ◽  
pp. 5-13
Author(s):  
Grigory Popov ◽  
◽  
Vasily Zubanov ◽  
Valeriy Matveev ◽  
Oleg Baturin ◽  
...  

The presented work provides a detailed description of the method developed by the authors for coordinating the working process of the main elements of the starting system for a modern gas turbine engine for a civil aviation aircraft: an auxiliary power unit (APU) and an air turbine – starter. This technique was developed in the course of solving the practical problem of selecting the existing APU and air turbine for a newly created engine. The need to develop this method is due to the lack of recommendations on the coordination of the elements of the starting system in the available literature. The method is based on combining the characteristics of the APU and the turbine, reduced to a single coordinate system. The intersection of the characteristic’s lines corresponding to the same conditions indicates the possibility of joint operation of the specified elements. The lack of intersection indicates the impossibility of joint functioning. The calculation also takes into account losses in the air supply lines to the turbine. The use of the developed method makes it possible to assess the possibility of joint operation of the APU and the air turbine in any operating mode. In addition to checking the possibility of functioning, as a result of the calculation, specific parameters of the working process at the operating point are determined, which are then used as initial data in calculating the elements of the starting system, for example, determining the parameters of the turbine, which in turn allow providing initial information for calculating the starting time or the possibility of functioning of the starting system GTE according to strength and other criteria. The algorithm for calculating the start-up time of the gas turbine engine was also developed by the authors and implemented in the form of an original computer program. Keywords: gas turbine engine start-up, GTE starting system, air turbine, methodology, joint work, auxiliary power unit, power, start-up time, characteristics matching, coordination, operational characteristics, computer program.


Sign in / Sign up

Export Citation Format

Share Document