scholarly journals MORPHOLOGICAL CHANGES OF THE RETICULAR ZONE OF THE CORTEX OF ADRENAL GLANDS AND OF THE SECRETORY ACTIVITY OF ITS CORTICOSTEROCYTES IN THE PUBERTAL PERIOD IN RATS DEVELOPING AT THE INFLUENCE OF THE ENDOCRINAL DISRUPTER DICHLORODIPHENYLTRICHLOROETHANE

2018 ◽  
Vol 26 (2) ◽  
pp. 22-25
Author(s):  
D. A. Tsomartova ◽  
N. V. Yaglova ◽  
V. V. Yaglov ◽  
S. S. Obernikhin ◽  
S. V. Nazimova ◽  
...  

Affection of developing organism by endocrine disruptors is an actively studied topic of scientific research in medicine, caused by a progressive increase in the number of diseases and disorders in the development of the reproductive and endocrine systems. Dichlorodiphenyltrichloroethane (DDT) is the most wide-spread endocrine disruptor. Low-dose exposure to DDT disrupts production of sex steroids by poorly known mechanisms. The research was focused on assessment of morphology of adrenal zona reticularis and fine structure of reticularis endocrine cells and changes in their secretory machinery in rats exposed to low doses of DDT during prenatal and postnatal development. The experimental group consisted of the male offspring of dams, who daily consumed solution of o, p-DDT at a concentration of 20 µg/l, from mating until the end of the suckling period in offspring, which then consumed a similar solution of DDT. Daily consumption of DDT by the offspring was 2,90±0,12 µg/kg body weight. These doses corresponds to levels of exposure of humans to DDT with food products taking to account the differences in metabolism of DDT in rats and humans. The control and experimental rats were sacrificed on the 42nd day of postnatal development (pubertal period). Light microscopy of adrenal sections found hypoplasia of zona reticularis in rats after developmental exposure to endocrine disruptor. Electron microscopy revealed prevalence of cells with low lipid content in cytoplasm, less developed endoplasmatic reticulum and Golgi complex and signs of lowered functional activity of mitochondria indicated decreased steroidogenic activity of zona reticularis. These findings explain previously found impaired production of sex steroids in DDT-exposed rats. Electron microscopy also found that disruption of steroid secretion in reticularis cells by DDT led to compensatory enlargement of cells and increase in number of mitochondria per m2 of cytoplasm indicating development of structural support for long-term enhancement of steroidogenic activity.

Author(s):  
F.G. Lightfoot ◽  
L.E. Grau ◽  
M.M. Cassidy ◽  
G.R. Tadvalkar ◽  
G.V. Vahouny

Psyllium hydrophillic mucilloid is a natural gelling fiber consumed by a large population of our society. It is used as a bulk-producing laxative and in the treatment of gastrointestinal disorders such as “Irritable Bowel Syndrome”. The literature pertaining to the ultrastructural effects of this agent is sparse.This study documents morphological changes induced by psyllium. Animals fed a diet containing 2% psyllium for four weeks were subsequently sacrificed and processed for scanning and transmission electron microscopy. The colon contained fecal material combined with psyllium which conformed to the contour of the luminal surface. This mixture formed surface replicas of the intestinal mucosa. These replicas and their related colonic sites were processed for morphologic analysis.


Author(s):  
John C. Garancis ◽  
Robert O. Hussa ◽  
Michael T. Story ◽  
Donald Yorde ◽  
Roland A. Pattillo

Human malignant trophoblast cells in continuous culture were incubated for 3 days in medium containing 1 mM N6-O2'-dibutyryl cyclic adenosine 3':5'-monophosphate (dibutyryl cyclic AMP) and 1 mM theophylline. The culture fluid was replenished daily. Stimulated cultures secreted many times more chorionic gonadotropin and estrogens than did control cultures in the absence of increased cellular proliferation. Scanning electron microscopy revealed remarkable surface changes of stimulated cells. Control cells (not stimulated) were smooth or provided with varying numbers of microvilli (Fig. 1). The latter, usually, were short and thin. The surface features of stimulated cells were considerably different. There was marked increase of microvilli which appeared elongated and thick. Many cells were covered with confluent polypoid projections (Fig. 2). Transmission electron microscopy demonstrated marked activity of cytoplasmic organelles. Mitochondria were increased in number and size; some giant forms with numerous cristae were observed.


Author(s):  
Frank J. Longo

Measurement of the egg's electrical activity, the fertilization potential or the activation current (in voltage clamped eggs), provides a means of detecting the earliest perceivable response of the egg to the fertilizing sperm. By using the electrical physiological record as a “real time” indicator of the instant of electrical continuity between the gametes, eggs can be inseminated with sperm at lower, more physiological densities, thereby assuring that only one sperm interacts with the egg. Integrating techniques of intracellular electrophysiological recording, video-imaging, and electron microscopy, we are able to identify the fertilizing sperm precisely and correlate the status of gamete organelles with the first indication (fertilization potential/activation current) of the egg's response to the attached sperm. Hence, this integrated system provides improved temporal and spatial resolution of morphological changes at the site of gamete interaction, under a variety of experimental conditions. Using these integrated techniques, we have investigated when sperm-egg plasma membrane fusion occurs in sea urchins with respect to the onset of the egg's change in electrical activity.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2489
Author(s):  
Ami Yoo ◽  
Mengshi Lin ◽  
Azlin Mustapha

The application of nanoparticles (NPs) for food safety is increasingly being explored. Zinc oxide (ZnO) and silver (Ag) NPs are inorganic chemicals with antimicrobial and bioactive characteristics and have been widely used in the food industry. However, not much is known about the behavior of these NPs upon ingestion and whether they inhibit natural gut microflora. The objective of this study was to investigate the effects of ZnO and Ag NPs on the intestinal bacteria, namely Escherichia coli, Lactobacillus acidophilus, and Bifidobacterium animalis. Cells were inoculated into tryptic soy broth or Lactobacilli MRS broth containing 1% of NP-free solution, 0, 12, 16, 20 mM of ZnO NPs or 0, 1.8, 2.7, 4.6 mM Ag NPs, and incubated at 37 °C for 24 h. The presence and characterization of the NPs on bacterial cells were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Membrane leakage and cell viability were assessed using a UV-visible spectrophotometer and confocal electron microscope, respectively. Numbers of treated cells were within 1 log CFU/mL less than those of the controls for up to 12 h of incubation. Cellular morphological changes were observed, but many cells remained in normal shapes. Only a small amount of internal cellular contents was leaked due to the NP treatments, and more live than dead cells were observed after exposure to the NPs. Based on these results, we conclude that ZnO and Ag NPs have mild inhibitory effects on intestinal bacteria.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Claire Brun ◽  
Jean-Marie Exbrayat ◽  
Michel Raquet

Reproduction in vertebrates is controlled by the hypothalamo-pituitary-gonadal axis, and both the sex steroid and pituitary hormones play a pivotal role in the regulation of the physiology of the oviduct and events occurring within the oviduct. Their hormonal actions are mediated through interaction with specific receptors. Our aim was to locate α and β estrogen receptors, progesterone receptors, gonadotropin and prolactin receptors in the tissues of the oviduct of Typhlonectes compressicauda (Amphibia, Gymnophiona), in order to study the correlation between the morphological changes of the genital tract and the ovarian cycle. Immunohistochemical methods were used. We observed that sex steroids and pituitary hormones were involved in the morpho-functional regulation of oviduct, and that their cellular detection was dependent on the period of the reproductive cycle.


Author(s):  
Franziska Winkelmann ◽  
Marcus Frank ◽  
Anne Rabes ◽  
Nicole Koslowski ◽  
Cindy Schulz ◽  
...  

AbstractSchistosomiasis is one of the most devastating parasitic disease in the world. Schistosoma spp. survive for decades within the vasculature of their human hosts. They have evolved a vast array of mechanisms to avoid the immune reaction of the host. Due to their sexual dimorphism, with the female worm lying within the gynecophoric canal of the male worm, it is the male that is exposed to the immediate environment and the soluble parts of the host’s immune response. To understand how the worms are so successful in fending off the immune attacks of the host, comparative analyses of both worm sexes in human serum (with or without Praziquantel) were performed using scanning electron microscopy, transmission electron microscopy, and immunohistochemistry. Further, gene expression analyses of tegument-specific genes were performed. Following the incubation in human serum, males and females out of pairs show morphological changes such as an altered structure of the pits below the surface and an increased number of pits per area. In addition, female schistosomes presented a marked tuft-like repulsion of their opsonized surface. The observed resistance of females to Praziquantel seemed to depend on active proteins in the human serum. Moreover, different expression profiles of tegument-specific genes indicate different functions of female_single and male_single teguments in response to human serum. Our results indicate that female schistosomes developed different evasion strategies toward the host’s immune system in comparison to males that might lead to more robustness and has to be taken into account for the development of new anti-schistosomal drugs.


1988 ◽  
Vol 34 (5) ◽  
pp. 625-630 ◽  
Author(s):  
J. P. Latgé ◽  
R. L. Cabrera Cabrera ◽  
M. C. Prévost

A fermenter method for producing conidiospores of the acarine pathogen, Hirsutella thompsonii, was developed using a strain able to produce microcycle conidiation in submerged culture. The morphological changes occurring during microcycle formation were followed under electron microscopy. Growth and sporulation patterns of the fungus were examined in batch culture. An average of 2–5 × 108 spores/mL was obtained after 3 days of growth.


1986 ◽  
Vol 102 (4) ◽  
pp. 1400-1411 ◽  
Author(s):  
J Kolega

Mechanical tension influences tissue morphogenesis and the synthetic, mitotic, and motile behavior of cells. To determine the effects of tension on epithelial motility and cytoskeletal organization, small, motile clusters of epidermal cells were artificially extended with a micromanipulated needle. Protrusive activity perpendicular to the axis of tension was dramatically suppressed. To determine the ultrastructural basis for this phenomenon, cells whose exact locomotive behavior was recorded cinemicrographically were examined by transmission electron microscopy. In untensed, forward-moving lamellar protrusions, microfilaments appear disorganized and anisotropically oriented. But in cytoplasm held under tension by micromanipulation or by the locomotive activity of other cells within the epithelium, microfilaments are aligned parallel to the tension. In non-spreading regions of the epithelial margin, microfilaments lie in tight bundles parallel to apparent lines of tension. Thus, it appears that tension causes alignment of microfilaments. In contrast, intermediate filaments are excluded from motile protrusions, being confined to the thicker, more central part of the cell. They roughly follow the contours of the cell, but are not aligned relative to tension even when microfilaments in the same cell are. This suggests that the organization of intermediate filaments is relatively resistant to physical distortion and the intermediate filaments may act as passive structural support within the cell. The alignment of microfilaments under tension suggests a mechanism by which tension suppresses protrusive activity: microfilaments aligned by forces exerted through filament-surface or filament-filament interconnections cannot reorient against such force and so cannot easily extend protrusions in directions not parallel to tension.


1990 ◽  
Vol 38 (10) ◽  
pp. 1469-1478 ◽  
Author(s):  
D R Eisenmann ◽  
A H Salama ◽  
A M Zaki ◽  
S H Ashrafi

Colchicine is known to affect secretory, transport, and degradative functions of ameloblasts. The effects of colchicine on membrane-associated calcium and Ca2+,Mg2(+)-ATPase in secretory and maturation ameloblasts were investigated cytochemically. The pyroantimonate (PPA) method was used for localizing calcium and a modified Wachstein-Meisel medium was used to localize Ca2+,Mg2(+)-ATPase. Sections representing secretory and early maturation stages were examined by transmission electron microscopy. Morphological changes induced by colchicine included dislocated organelles and other well-established reactions to such anti-microtubule drugs. Calcium pyroantimonate (Ca-PA) deposits in most ameloblast types were markedly reduced, with the greater reduction occurring in those cells more severely altered morphologically. However, the cell membranes of both control and experimental smooth-ended maturation ameloblasts were essentially devoid of Ca-PA. The normal distribution and intensity of Ca2+,Mg2(+)-ATPase was not affected by colchicine. Because the observed reduction of membrane-associated calcium is apparently not mediated by Ca2+,Mg2(+)-ATPase in this case, other aspects of the calcium regulating system of ameloblasts are apparently targeted by colchicine.


Sign in / Sign up

Export Citation Format

Share Document