New Design of Low-Head Hydro Turbine for Small-Scale Hydropower Plant

2021 ◽  
Vol 926 (1) ◽  
pp. 012013
Author(s):  
Y Setiawan ◽  
E S Wijianti ◽  
B S Wibowo ◽  
S Saparin ◽  
P Prayitnoadi

Abstract The Archimedes screw water turbine (AST) is a device that works mechanically to produce electrical energy with an energy source that comes from the flow of water. Archimedes screw hydro turbines operate at low head and flow rates and can generate electricity at micro levels. This type of turbine is very suitable for use in small waters such as irrigation and rivers. The research was conducted by building a prototype of a small-scale Archimedes screw hydro turbine with and without deflector. The purpose of this research is to compare the rotation produced by the two turbines and whether the installation of a deflector can improve turbine performance. The turbine is constructed with a screw length of 1 m, outer diameter is 30 cm, the number of blades 15, and each has a pitch distance is 13 cm. Turbine angle variations are 30°, 35°, and 40°. The results showed that the best rotor rotation was produced by the screw without deflector at an angle of 30°. This shows that the addition of a deflector reduces the resulting screw rotation.


2010 ◽  
Vol 90 (3) ◽  
pp. 189-206 ◽  
Author(s):  
Mila Pavlovic ◽  
Rajko Golic ◽  
Dejan Sabic

The territory of the municipality of Mali Zvornik is, from the aspect of morphology and spatial-functional structure, a heterogeneous area. It is located in the valley of the Drina River and in hilly-mountainous part of Podrinjske mountains. The area of the municipality is 184 km?, with 14076 inhabitants (2002). The importance of water resources for the development of the municipality, particularly of the hydropower plant (HPP) ?Zvornik?, is analyzed in this paper. Inadequate use of hydro-energetic potential, possibilities for construction of new hydropower plants and economic reasons for their construction are also emphasized. The priorities of the development of hydraulic engineering are defined in relation to morphological and hydrological conditions. They refer to increase of power of the HPP ?Zvornik? and construction of small-scale hydropower plants in hilly-mountainous part of municipality. Considering depopulation processes in the villages of Mali Zvornik, hydraulic engineering, together with agriculture, forestry, exploitation of mineral goods and tourism, can be one of the factors of demographic and economic revitalization of this area.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2522
Author(s):  
Isabel Boavida ◽  
Filipa Ambrósio ◽  
Maria João Costa ◽  
Ana Quaresma ◽  
Maria Manuela Portela ◽  
...  

Downstream of small-scale hydropower plants (SHPs), the intensity, frequency and persistence of hydropeaking events often cause an intolerable stress on fish of all life stages. Rapid increases in flow velocity result in fish avoiding unstable habitats and seeking refuge to reduce energy expenditure. To understand fish movements and the habitat use of native Iberian cyprinids in a high-gradient peaking river, 77 individuals were PIT tagged downstream of Bragado SHP in the North of Portugal. Tagged fish species included Pseudochondrostoma duriense and Squalius carolitertii. Fish positions were recorded manually on two different occasions: during hydropeaking events (HP) and without hydropeaking events (NHP). From the 77 tagged fish, we were able to record habitat use for 33 individuals (20 P. duriense and 13 S. carolitertii) in a total of 125 relocations. Fish species were distributed along the river reach with high density in the upstream area in the vicinity of the SHP tailrace, in particular during HP. Fish locations were associated with velocity for P. duriense and S. carolitertii. The latter tended to use faster flowing waters than P. duriense. Our findings on the habitat use in peaking rivers are a valuable tool to help in the selection and design of mitigation measures.


Author(s):  
Jinbo Chen ◽  
Abraham Engeda

As a major resource for electricity, hydropower is widely used around the world for renewable energy. Traditionally, large high-capital cost dam equipped with large turbine system is preferred to produce sufficient power supply. However, recently large hydropower system is questioned because of the impact of dams on the local environment, which could be a major barrier for development of large hydropower system. Besides, billions people remain without access to electricity and most of them are in remote and rural location where is not suitable for large hydropower system. Therefore, the utilization of ultra-low-head (ULH) water energy (situations where the hydraulic head is less than 3m or the water flow rate is more than 0.5m/s with zero head) has becomes more attractive. Part I of this paper focus on developing a design methodology for a low-impact, damless Kaplan turbine system for ULH water resource.


Author(s):  
Tarek ElGammal ◽  
Yi-Hsin Yen ◽  
Ryoichi S. Amano ◽  
Joseph Millevolte ◽  
Randal J. Mueller ◽  
...  

In this context, a numerical study was conducted to predict the performance of a small axial Kaplan hydro-turbine of 30 cm diameter that can be manufactured and installed vertically on a low head water level of less than 3 m. As a CFD simulation scheme, Large Eddy Simulation was selected to solve for the variables of turbulent flow due to its high fidelity performance for capturing time-variable turbulence wakes and eddies. Turbine intake tube dimensioning was primarily studied as an affecting element to maximize energy extraction with the set of initial design parameters. The intake tube was tested at six angles (3, 6, 9, 12, 15, 18 degrees) and four lengths (50, 60, 75, 90 cm). The simulations were performed on a pre-determined water height, one diffuser design, and one set of stator-rotor having a rotational speed of 750 rpm. Maximizing the efficiency of a system with less material cost was the primary goal of the comparative study. After that, bellmouth profile was adopted to find out its influence on the system performance. Outcomes have proven the merit of higher slope per side length in enhancing output power with an average of 2.7 percent by full expansion from minimum to the maximum angle. Moreover, a corresponding marginal efficiency raise was observed by increasing intake slope, while it was found that the system acts poorly with longer intake tubes as both power and efficiency go down. Bellmouth profiles, based on the guidelines of the best straight design, significantly improved system output to reach 81 percent efficiency.


2012 ◽  
Vol 41 ◽  
pp. 376-382 ◽  
Author(s):  
Kai Shimokawa ◽  
Akinori Furukawa ◽  
Kusuo Okuma ◽  
Daisuke Matsushita ◽  
Satoshi Watanabe

2009 ◽  
Vol 2009 (0) ◽  
pp. 381-382
Author(s):  
Shunsuke IWAMOTO ◽  
Daisuke MATSUSHITA ◽  
Kusuo OKUMA ◽  
Satoshi WATANABE ◽  
Akinori FURUKAWA ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document