scholarly journals The influence of water resources on transformation of spatial-functional structure of the territory of the municipality of Mali Zvornik and the possibilities for the construction of new hydro power plants

2010 ◽  
Vol 90 (3) ◽  
pp. 189-206 ◽  
Author(s):  
Mila Pavlovic ◽  
Rajko Golic ◽  
Dejan Sabic

The territory of the municipality of Mali Zvornik is, from the aspect of morphology and spatial-functional structure, a heterogeneous area. It is located in the valley of the Drina River and in hilly-mountainous part of Podrinjske mountains. The area of the municipality is 184 km?, with 14076 inhabitants (2002). The importance of water resources for the development of the municipality, particularly of the hydropower plant (HPP) ?Zvornik?, is analyzed in this paper. Inadequate use of hydro-energetic potential, possibilities for construction of new hydropower plants and economic reasons for their construction are also emphasized. The priorities of the development of hydraulic engineering are defined in relation to morphological and hydrological conditions. They refer to increase of power of the HPP ?Zvornik? and construction of small-scale hydropower plants in hilly-mountainous part of municipality. Considering depopulation processes in the villages of Mali Zvornik, hydraulic engineering, together with agriculture, forestry, exploitation of mineral goods and tourism, can be one of the factors of demographic and economic revitalization of this area.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5160
Author(s):  
Dariusz Borkowski ◽  
Dariusz Cholewa ◽  
Anna Korzeń

Hybrid hydro energy systems are usually analysed with pumped hydro storage systems, which can facilitate energy accumulation from other sources. Despite the lack of water storage, run-of-the-river hydropower plants are also attractive for hybrid systems owing to their low investment cost, short construction time, and small environmental impact. In this study, a hybrid system that contains run-of-the-river small hydro power plants (SHPs), PV systems, and batteries to serve local loads is examined. Low-power and low-head schemes that use variable-speed operation are considered. The novelty of this study is the proposal of a dedicated steady-state model of the run-of-the-river hydropower plant that is suitable for energy production analysis under different hydrological conditions. The presented calculations based on a real SHP of 150 kW capacity have shown that a simplified method can result in a 43% overestimation of the produced energy. Moreover, a one-year analysis of a hybrid system operation using real river flow data showed that the flow averaging period has a significant influence on the energy balance results. The system energy deficiency and surplus can be underestimated by approximately 25% by increasing the averaging time from day to month.


AIMS Energy ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1299-1320
Author(s):  
Vincent Katutsi ◽  
◽  
Milly Kaddu ◽  
Adella Grace Migisha ◽  
Muhumuza Ezra Rubanda ◽  
...  

<abstract> <p>Even though hydropower plants are currently the most dominant source of electricity in Uganda, the rate of development of these resources for power generation remains low. Using a semi-systematic review approach, this paper seeks to understand why there is a slow rate of hydropower development in Uganda (challenges) and thereby provide potential solutions to these challenges. With current total capacity of about 1011 MW, findings indicate that there is a higher future prospect for hydropower generation in Uganda, with an estimated potential of over 4500 MW. In terms of number of projects, small-scale hydropower plants dominate power plants in Uganda, currently accounting for 19 out of 35 grid-connected power plants. However, with 855 MW installation capacity, large hydropower plants dominate the power generation plants landscape in Uganda. This study found that the challenges to hydropower development in this country are multi-dimensional including technical, economic, environmental, and social factors, and shows that the cross-cutting challenge is lack of human capacity that possess adequate skills to handle hydropower projects in the country. Furthermore, this study discussed practical solutions to address the identified problems facing hydro power in Uganda.</p> </abstract>


2019 ◽  
Vol 11 (2) ◽  
pp. 129-137
Author(s):  
Nurul Dyah Pratiwi ◽  
Isdiyato Isdiyato

Microhydro power plant (MPP) is a small-scale power plant that uses water energy. The process of energy change occurs in a device called a synchronous generator. when the synchronous generator is given an arbitrary load, then the voltage will change. These results cause voltage and frequency instability. This research was conducted to analyze the voltage and frequency instability in MPP. The research method used in this research is descriptive quantitative approach in the village of Soko Kembang, Petungkriyono District, Pekalongan Regency, Central Java. This study provides an overview and explanation of the problems regarding the voltage and frequency instability of Micro Hydro Power Plants. The results of this study are the highest and lowest voltage / frequency instability values, namely 235 volts / 51 Hz and 160 volts / 44 Hz, due to the influence of changes in load current, which can affect the rotational speed of the generator changes, resulting in unstable voltage and frequency generated by the generator, the rotational speed of the generator changes, resulting in unstable voltage and frequency generated by the generator. The solution is  add water power to rotate the shaft of the turbine and generator to be tighter, so that it can reduce the value of the decrease in electric power by losses to the turbine and generator. Large electric power can increase voltage and frequency without having to adjust the load, and the need for improvement of the ELC system in order to get a more effective value of voltage and frequency stability.  


2020 ◽  
Vol 15 (6) ◽  
pp. 855-864
Author(s):  
Muhammad Yusan Naim ◽  
Henny Pramoedyo ◽  
Nuddin Harahab ◽  
Syarifuddin Nodjeng ◽  
Sudirman Syam

The effect of developing hybrid resources on the management outcomes of micro-hydropower plants in remote areas has been studied and analyzed. The hybrid resource is a combination of two energy sources, such as water and solar energy, that operate together in meeting the needs of electrical power in Ambava Village, Tinondo Sub-district, East-Kolaka Regency, Southeast Sulawesi Province. This study has used a management model describing the relationship and influence of latent variables and their manifestation variables. Here, Confirmatory Factor Analysis (CFA) based Common-Pool-Resources (CPR) is the proper method of testing the structural model used. The results show that the Critics-Ratio (CR) and Standard Loading Factor (SLF) have fulfilled the expected value. The direct influence of the variable exogenous hybrid resources to the endogenous variable outcome of 0.213 has fulfilled the Gold of Fit criteria. Then, the direct impact of the most dominant latent variable is the operating dimension of the resource. At the same time, the indirect effect on the manifest variable is the increase in electricity reserve. Furthermore, the most dominant indirect impact of the hybrid resources latent variable is the benefit and cost dimensions, while the most dominant manifest variable is people's welfare savings.


2021 ◽  
Author(s):  
Rakesh Roy ◽  
Amit Kumar ◽  
Abhinav Kumar ◽  
Anindita Jamatia ◽  
Prabir Ranjan Kasari ◽  
...  

Author(s):  
Markus Dwiyanto Tobi ◽  
Vina N Van Harling

Electricity is needed by the whole society. Sasnek village is one of the villages located in Sawiat District, South Sorong Regency, West Papua Province. Sasnek village is very clear and inhabited around 100KK. This village has not been served by electricity until now.  Micro-hydro power plants are small-scale power plants whose capacity presents between 100 W to 100 kW. This study will be used for loading stages with a 12 Volt DC power capacity, because it is one of the most efficient, young and safe ways. Measurement of air discharge, discharged by 2 liters / second from a measurement area of 5 m2 and an average air speed of 00.65 m / d.  However, due to the condition of the river water flowing throughout the year in the sense of never dried, then used a correction factor of 0.75. Thus the flow that can be used is equal to 0.65 m3 / d. Based on the analysis of the potential contained in Sasnek PLTMH, it can be calculated Distribution Grid sourced from Sasnek PLTMH is 10 KW.With the careful planning so that the results of its implementation will give a positive impact to be meeting the needs of electricity in the village and surrounding villages sasnek.


Author(s):  
Y. Ilchyshyn

The article coverage the development issues Carpathian cascade mini-hydro-plants for example basin Cheremosh. It was the influence of existing hydro power plants in natural (water) environment and proved inappropriate, unprofitable and environmental threat. Available mini water plants violate hydrologic regime (water content of the river) and stimulates the development of erosion-accumulative processes, endangered species and benthic organisms integral component of aquatic ecosystems. Operation of small hydropower plants also contributes to shallowing of rivers and creation of artificial barriers for migration and gene pool exchange between populations of aquatic animals. The construction of mini hydro cascade prevents alloys of the river (rafting). In addition there is a threat of ecological security of the region and the development tourism and recreation, social and economic potential of the basin, the Cheremosh. Key words: mini-hydro, river Cheremosh, water quality, environmental hazards, hydrology, hydroecology.


2018 ◽  
Vol 67 ◽  
pp. 04027
Author(s):  
Muhammad Ilham Maulana ◽  
Ahmad Syuhada ◽  
Fiqih Almas

One of the alternative solutions to reduce the impact of electricity crisis in Aceh and other isolated areas in Indonesia is by the construction of small-scale hydro power plants that can work efficiently on the heads lower than 10 meters. One suitable type of turbine applied to the head below 10 meters is the Archimedes screw turbine. Due to the lack of information about the application of low head power plants, resulting in applications of this type of turbine is still less in Indonesia. This paper examined the appropriate turbine model. Before experimental turbine testing, turbines were designed theoretically first and then analyzed numerically. The flow velocity and pressure patterns within the turbine were analyzed using ANSYS CFD (Computational Fluid Dynamic) software under design conditions for 7, 9 and 11 screw numbers for single blade turbine. Based on the results of pressure analysis, speed and turbulent kinetic energy, it found that turbine performance using 11 blades is better among the three turbines. However, the highest average speed was obtained on the turbine using 7 screws, which maximum pressure obtained on a turbine 7 screws of 1406 Pa, on 9 screws on plane 1301 Pa and at 11 screws of 1175 Pa. Based on the results of the analysis, it showed that the smaller the distance between the channel and turbine blades, the results were more efficient due to the absence of wasted streams. Therefore, the flow pressure in the inlet position all directly leaded to the tip off the blade to produce a momentum.


Sign in / Sign up

Export Citation Format

Share Document