scholarly journals Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis Using SVM with Normalized Poly Kernel

Author(s):  
Pulung Hendro Prastyo ◽  
Amin Siddiq Sumi ◽  
Ade Widyatama Dian ◽  
Adhistya Erna Permanasari

Background: Handling COVID-19 (Corona Virus Disease-2019) in Indonesia was once trending on Twitter. The Indonesian government's handling evoked pros and cons in the community. Public opinions on Twitter can be used as a decision support system in making appropriate policies to evaluate government performance. A sentiment analysis method can be used to analyse public opinion on Twitter.Objective: This study aims to understand public opinion trends on COVID-19 in Indonesia both from a general perspective and an economic perspective.Methods: We used tweets from Twitterscraper library. Because they did not have a label, we provided labels using sentistrength_id and experts to be classified into positive, negative, and neutral sentiments. Then, we carried out a pre-processing to eliminate duplicate and irrelevant data. Next, we employed machine learning to predict the sentiments for new data. After that, the machine learning algorithms were evaluated using confusion matrix and K-fold cross-validation.Results: The SVM analysis on the sentiments on general aspects using two-classes dataset achieved the highest performance in average accuracy, precision, recall, and f-measure with the value of 82.00%, 82.24%, 82.01%, and 81.84%, respectively.Conclusion: From the economic perspective, people seemed to agree with the government’s policies in dealing with COVID-19; but people were not satisfied with the government performance in general. The SVM algorithm with the Normalized Poly Kernel can be used as an intelligent algorithm to predict sentiment on Twitter for new data quickly and accurately. 

2019 ◽  
Vol 9 (6) ◽  
pp. 1249 ◽  
Author(s):  
Sunghee Park ◽  
Jiyoung Woo

Sentiment analysis is the most common text classification tool that analyzes incoming messages and tells whether the underlying sentiment is positive, negative, or neutral. We can use this technique to understand people by gender, especially people who are suffering from a sensitive disease. People use health-related web forums to easily access health information written by and for non-experts and also to get comfort from people who are in a similar situation. The government operates medical web forums to provide medical information, manage patients’ needs and feelings, and boost information-sharing among patients. If we can classify people’s emotional or information needs by gender, age, or location, it is possible to establish a detailed health policy specialized into patient segments. However, people with sensitive illness such as AIDS tend to hide their information. Especially, in the case of sexually transmitted AIDS, we can detect problems and needs according to gender. In this work, we present a gender detection model using sentiment analysis and machine learning including deep learning. Through the experiment, we found that sentiment features generate low accuracy. However, senti-words give better results with SVM. Overall, traditional machine learning algorithms have a high misclassification rate for the female category. The deep learning algorithm overcomes this drawback with over 90% accuracy.


2021 ◽  
Vol 11 (10) ◽  
pp. 4443
Author(s):  
Rokas Štrimaitis ◽  
Pavel Stefanovič ◽  
Simona Ramanauskaitė ◽  
Asta Slotkienė

Financial area analysis is not limited to enterprise performance analysis. It is worth analyzing as wide an area as possible to obtain the full impression of a specific enterprise. News website content is a datum source that expresses the public’s opinion on enterprise operations, status, etc. Therefore, it is worth analyzing the news portal article text. Sentiment analysis in English texts and financial area texts exist, and are accurate, the complexity of Lithuanian language is mostly concentrated on sentiment analysis of comment texts, and does not provide high accuracy. Therefore in this paper, the supervised machine learning model was implemented to assign sentiment analysis on financial context news, gathered from Lithuanian language websites. The analysis was made using three commonly used classification algorithms in the field of sentiment analysis. The hyperparameters optimization using the grid search was performed to discover the best parameters of each classifier. All experimental investigations were made using the newly collected datasets from four Lithuanian news websites. The results of the applied machine learning algorithms show that the highest accuracy is obtained using a non-balanced dataset, via the multinomial Naive Bayes algorithm (71.1%). The other algorithm accuracies were slightly lower: a long short-term memory (71%), and a support vector machine (70.4%).


2017 ◽  
Author(s):  
◽  
Zeshan Peng

With the advancement of machine learning methods, audio sentiment analysis has become an active research area in recent years. For example, business organizations are interested in persuasion tactics from vocal cues and acoustic measures in speech. A typical approach is to find a set of acoustic features from audio data that can indicate or predict a customer's attitude, opinion, or emotion state. For audio signals, acoustic features have been widely used in many machine learning applications, such as music classification, language recognition, emotion recognition, and so on. For emotion recognition, previous work shows that pitch and speech rate features are important features. This thesis work focuses on determining sentiment from call center audio records, each containing a conversation between a sales representative and a customer. The sentiment of an audio record is considered positive if the conversation ended with an appointment being made, and is negative otherwise. In this project, a data processing and machine learning pipeline for this problem has been developed. It consists of three major steps: 1) an audio record is split into segments by speaker turns; 2) acoustic features are extracted from each segment; and 3) classification models are trained on the acoustic features to predict sentiment. Different set of features have been used and different machine learning methods, including classical machine learning algorithms and deep neural networks, have been implemented in the pipeline. In our deep neural network method, the feature vectors of audio segments are stacked in temporal order into a feature matrix, which is fed into deep convolution neural networks as input. Experimental results based on real data shows that acoustic features, such as Mel frequency cepstral coefficients, timbre and Chroma features, are good indicators for sentiment. Temporal information in an audio record can be captured by deep convolutional neural networks for improved prediction accuracy.


Author(s):  
Soundariya R.S. ◽  
◽  
Tharsanee R.M. ◽  
Vishnupriya B ◽  
Ashwathi R ◽  
...  

Corona virus disease (Covid - 19) has started to promptly spread worldwide from April 2020 till date, leading to massive death and loss of lives of people across various countries. In accordance to the advices of WHO, presently the diagnosis is implemented by Reverse Transcription Polymerase Chain Reaction (RT- PCR) testing, that incurs four to eight hours’ time to process test samples and adds 48 hours to categorize whether the samples are positive or negative. It is obvious that laboratory tests are time consuming and hence a speedy and prompt diagnosis of the disease is extremely needed. This can be attained through several Artificial Intelligence methodologies for prior diagnosis and tracing of corona diagnosis. Those methodologies are summarized into three categories: (i) Predicting the pandemic spread using mathematical models (ii) Empirical analysis using machine learning models to forecast the global corona transition by considering susceptible, infected and recovered rate. (iii) Utilizing deep learning architectures for corona diagnosis using the input data in the form of X-ray images and CT scan images. When X-ray and CT scan images are taken into account, supplementary data like medical signs, patient history and laboratory test results can also be considered while training the learning model and to advance the testing efficacy. Thus the proposed investigation summaries the several mathematical models, machine learning algorithms and deep learning frameworks that can be executed on the datasets to forecast the traces of COVID-19 and detect the risk factors of coronavirus.


Kursor ◽  
2020 ◽  
Vol 10 (4) ◽  
Author(s):  
Felisia Handayani ◽  
Metty Mustikasari

Sentiment analysis is computational research of the opinions of many people who are textually expressed against a particular topic. Twitter is the most popular communication tool among Internet users today to express their opinions. Deep Learning is a solution to allow computers to learn from experience and understand the world in terms of the hierarchy concept. Deep Learning objectives replace manual assignments with learning. The development of deep learning has a set of algorithms that focus on learning data representation. The recurrent Neural Network is one of the machine learning methods included in Deep learning because the data is processed through multi-players. RNN is also an algorithm that can recall the input with internal memory, therefore it is suitable for machine learning problems involving sequential data. The study aims to test models that have been created from tweets that are positive, negative, and neutral sentiment to determine the accuracy of the models. The models have been created using the Recurrent Neural Network when applied to tweet classifications to mark the individual classes of Indonesian-language tweet data sentiment. From the experiments conducted, results on the built system showed that the best test results in the tweet data with the RNN method using Confusion Matrix are with Precision 0.618, Recall 0.507 and Accuracy 0.722 on the data amounted to 3000 data and comparative data training and data testing of ratio data 80:20


Sign in / Sign up

Export Citation Format

Share Document