scholarly journals Effect of oocyte vitrification before and after in vitro maturation towards Bcl-2, Bax and Bcl-2/Bax ratio expression

2017 ◽  
Vol 24 (2) ◽  
pp. 56
Author(s):  
Zakiyatul Faizah ◽  
Haryanto Aswin ◽  
Hamdani Lunardhi

Objectives: to compare the expression of Bcl-2, Bax and Bcl-2/Bax ratio in cumulus cell and oocyte between vitrified oocyte pre and post in vitro maturation.Materials and Methods: Maturation was operated in medium TC 100 µl for 24 hours. Vitrification begins with washing oocyte in PBS basic medium supplemented of 20% serum for 1-2 minutes, followed by equilibration medium PBS + 20% serum + 10% ethylene glycol for 10-14 minutes, then transferred to 20% serum + PBS + 0.5 M sucrose + 15% ethylene glycol + PROH 15% for 25-30 seconds. Thawing is processed by submerging the oocytes in the media: 1). PBS + 20% serum + 0.5 M sucrose, 2). PBS + 20% serum + 0.25 M sucrose, and 3). PBS + 20% serum + 0.1 M sucrose. Imunocytochemistry observed the expression of Bcl-2, bax and Bcl-2/bax ratio.Results: Bcl-2 expression on oocyte in control group differed significantly with treatment group, Bcl-2 expression on cumulus in control group differed significantly with treatment 1 group. Bax expression on oocyte in control group differed significantly with treatment group. Bax expression on cumulus in control group differed significantly with treatment group. Bcl-2/Bax expression ratio on oocyte and cumulus did not differ significantly in all groupConclusion: No difference Bcl-2/Bax expression ratio on oocyte and cumulus between vitrified oocyte pre and post in vitro maturation.

2018 ◽  
Vol 24 (2) ◽  
pp. 56
Author(s):  
Zakiyatul Faizah ◽  
R. Haryanto Aswin ◽  
Hamdani Lunardhi

Objectives: to compare the expression of Bcl-2, Bax and Bcl-2/Bax ratio in cumulus cell and oocyte between vitrified oocyte pre and post in vitro maturation.Materials and Methods: Maturation was operated in medium TC 100 µl for 24 hours. Vitrification begins with washing oocyte in PBS basic medium supplemented of 20% serum for 1-2 minutes, followed by equilibration medium PBS + 20% serum + 10% ethylene glycol for 10-14 minutes, then transferred to 20% serum + PBS + 0.5 M sucrose + 15% ethylene glycol + PROH 15% for 25-30 seconds. Thawing is processed by submerging the oocytes in the media: 1). PBS + 20% serum + 0.5 M sucrose, 2). PBS + 20% serum + 0.25 M sucrose, and 3). PBS + 20% serum + 0.1 M sucrose. Imunocytochemistry observed the expression of Bcl-2, bax and Bcl-2/bax ratio.Results: Bcl-2 expression on oocyte in control group differed significantly with treatment group, Bcl-2 expression on cumulus in control group differed significantly with treatment 1 group. Bax expression on oocyte in control group differed significantly with treatment group. Bax expression on cumulus in control group differed significantly with treatment group. Bcl-2/Bax expression ratio on oocyte and cumulus did not differ significantly in all groupConclusion: No difference Bcl-2/Bax expression ratio on oocyte and cumulus between vitrified oocyte pre and post in vitro maturation.


2018 ◽  
Vol 19 (1) ◽  
pp. 71
Author(s):  
Zakiyatul Faizah ◽  
R. Haryanto Aswin ◽  
Hamdani Lunardhi ◽  
Widjiati Widjiati

Oocyte vitrification is a major challenge in assisted reproductive technology. Oocyte vitrification with cumulus cells provide benefits in the process of maturation and fertilization. Vitrification leads to rapid temperature changes, therefore the decreasing in temperature could damage the cells even when the morphology was normal. Vitrification of mature oocytes is common because of its low sensitiveness towards low temperatures than immature oocytes. The aim of the research was to compare the effect of vitrification before and after in vitro maturation to the expression of hyaluronan. Maturation was operated in medium TC 50 ?L in CO2 incubators for 24 hours. Vitrification started with washing oocyte in PBS basic medium supplemented with 20% serum for 1-2 minutes, then in equilibration medium PBS + 20% serum + 10% ethylene glycol for 10-14 minutes, then transferred to 20% serum + PBS + 0.5 M sucrose + 15% ethylene glycol + PROH 15% for 25-30 seconds. Thawing was processed by submerging the oocytes in the media: 1). PBS + 20% serum + 0.5 M sucrose (K1); 2) PBS + 20% serum + 0.25 M sucrose (K2); and 3).PBS + 20% serum + 0.1 M sucrose (K3). Immunocytochemical stain was performed to evaluate the hyaluronan expression. Remmele scale index (Immunoreactive score, IRS) was used to read the result. There was no differences of hyaluronan expression in oocyte and cumulus group of K1, K2 and K3 at p< 0.05, statistically. We concluded that there was no difference of hyaluronan expression on oocyte and cumulus between vitrified oocyte of pre and post in vitro maturation which indicated that oocyte could be vitrified in the immature and mature state.


2021 ◽  
Vol 22 (1) ◽  
pp. 109-115
Author(s):  
Zakiyatul Faizah ◽  
Raden Haryanto Aswin

Oocyte vitrification today became a hope to preserve fertility. Its was a major challenge because of oocyte characteristic in every phase. Immature oocytes were more sensitive to osmotic stress and the membrane wes less stable while mature oocyte have spindles that were very susceptible to temperature decrease. The study aim to compare the effect of vitrification before and after in vitro maturation to the expression TGF beta and GDF9. Oocyte of ewes divided into control groups (K0), K1 maturation prior vitrification, K2 vitrification prior maturation. Vitrification begins with washing oocytes in PBS supplemented of 20%serum for 1-2 minutes, followed by equilibration medium PBS + 20% serum + 10% ethylene glycol for 10-14 minutes, then transferred to 20% serum + PBS + 0.5 M sucrose + 15% ethylene glycol + PROH 15% for 25-30 seconds. Thawing was processed by in the media: 1). PBS + 20% serum + 0.5 M sucrose, 2).PBS + 20% serum + 0.25 M sucrose, and 3).PBS + 20% serum + 0.1 M sucrose. Immunocytochemical stain was performed to evaluate TGF ? and GDF9 expression. Remmele scale index (IRS) was used to read the result. TGF beta expression both in oocyte and cummulus of K0 and K1 was significant statistically difference (p<0.05) compare with K2. GDF9 expression both in oocyte and cummulus of K0 and K1 was significant statistically difference (p<0.05) compare with K2. We concluded that immature oocyte give better expression of TGF â and GDF9 than mature oocyte.


2010 ◽  
Vol 22 (1) ◽  
pp. 260
Author(s):  
M. Bertoldo ◽  
P. K. Holyoake ◽  
G. Evans ◽  
C. G. Grupen

Effective in vitro maturation (IVM) is essential for successful in vitro embryo production. The morphology of the cumulus investment before and after IVM may be a useful noninvasive indicator of oocyte quality. In pigs, oocyte developmental competence is reduced during the summer months. The aim of this study was to determine whether the morphology of cumulus-oocyte complexes (COC) before and after IVM are associated with oocyte quality, using COC collected from small and large follicles in summer and winter as models of poor and good oocyte quality. Ovaries were collected from sows slaughtered 4 days after weaning. The COC recovered from small (3-4 mm) and large (5-8 mm) antral follicles were morphologically graded and parthenogenetically activated following IVM during winter (n = 1419; 10 replicates) and summer (n = 2803; 10 replicates). Grade 1 and 2 COC had >2 layers of compact cumulus cells and a homogenous cytoplasm. Grade 3 COC were either partially or fully denuded, had a heterogeneous cytoplasm, or were vacuolated or dark in color. Grade 4 COC had expanded cumulus cells. Cumulus expansion was also assessed subsequent to IVM. The COC recorded as having a cumulus expansion index (CEI) of 1 had the poorest expansion with no detectable response to IVM, whereas those with a CEI of 4 had the greatest amount of expansion, including that of the corona radiata. Data were analyzed using a generalized linear mixed model in GenStat® (release 10, VSN International, Hemel Hempstead, UK). There was an effect of follicle size for Grade 1 COC, with COC from large follicles in both seasons yielding better quality COC (P < 0.05). The proportion of COC in Grade 2 was higher in small follicles during winter compared with large follicles, but there were no differences between follicle sizes during summer (P < 0.05). The proportion of COC with CEI 1 was highest in COC from small follicles during summer (P < 0.05). The proportion of COC from large follicles with CEI 2 was higher during summer compared with winter (P < 0.05). There were no seasonal or follicle size effects on COC with CEI 3 or 4 (P > 0.05). The proportion of oocytes that developed to blastocysts was greater in winter than in summer (39.06% ± 5.67 v. 22.27% ± 4.01; P < 0.05). Oocytes derived from large follicles had a greater ability to form blastocysts compared with those from small follicles (37.13% ± 5.65 v. 23.32% ± 4.56; P < 0.06). Morphological assessment of cumulus cells before and after IVM may be a useful tool to evaluate the effects of follicle size on oocyte developmental competence. However, the results of the present study indicate that cumulus cell morphology is not a good indicator of the effect of season on oocyte developmental competence.


2010 ◽  
Vol 22 (1) ◽  
pp. 322
Author(s):  
D. D. Bücher ◽  
M. A. Castro ◽  
M. E. Silva ◽  
M. A. Berland ◽  
I. I. Concha ◽  
...  

Granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotropic cytokine that stimulates proliferation, differentiation and function in different cells types. We have previously demonstrated (Bücher DD et al. 2008 Reprod. Dom. Anim. 43 (Suppl. 3), 146 abst.) that both subunits of GM-CSF receptor are expressed in granulosa cells from antral follicles in bovine ovaries. Also, we determined that the cytokine enhances glucose uptake through facilitative hexose transporters in granulosa cells in primary culture. The goals of the present study were to characterize the expression of GM-CSF receptor in cumulus cells and oocytes from bovine antral follicles and to determine its effects on in vitro-matured bovine COCs in a chemically defined medium. To determine the presence of a and |5 subunits of GM-CSF receptor, COCs were aspirated from follicles <8 mm in diameter, fixed, and submitted to immunocytochemistry. To study the effect of GM-CSF on in vitro maturation of oocytes, COCs (n =481) were cultured using serum-free medium (SOF) containing 0, 1, 10, and 100 ng mL-1 of human recombinant GM-CSF (R&D Systems, Inc., Minneapolis, MN, USA) for 22 h at 39°C, 5% CO2 in humidified air. Nuclear stage, cumulus expansion, cumulus cell number, and viability were analyzed after in vitro maturation. Cumulus expansion was assessed using the cumulus expansion index (CEI) (Fagbohun C and Down S 1990 Biol. Reprod. 42, 413-423). Nuclear stage was evaluated using aceto-orcein stain. To determine cumulus cell viability and number, COCs (n = 10-12 per group) were transferred into an Eppendorf tube and cumulus cells were removed by vortexing for 3 min, stained with trypan blue and counted with a hemocytometer. The study was conducted in 6 replicates. Data from cumulus expansion and cell number were analyzed by Kruskal-Wallis analysis. Data for nuclear stage and cell viability were analyzed by chi-square analysis and one way ANOVA, respectively. Both receptor subunits were present in cumulus cells and oocytes from COCs. COCs cultured in 10 and 100 ng mL-1 GM-CSF had CEI scores (0.8 and 1.22, respectively) greater (P < 0.01) than controls (0.2), but the proportion of COCs displaying second metaphase did not differ (P = 0.5) among treatment groups. GM-CSF at a concentration of 100 ng mL-1 increased (P < 0.01) cumulus cell viability by more than 20% compared to the control group. Similarly, GM-CSF at concentrations of 10 and 100 ng mL-1 increased (P < 0.05) cumulus cell number by more than 20% and 45%, respectively, from the control group. The use of a specific inhibitor of PI3 kinase (Ly294002; 10 and 100 μM) blocked the stimulatory effect of GM-CSF on cumulus expansion, cell viability, and cell number. In conclusion, the results of the study suggest a plausible modulator role of GM-CSF in the metabolism and function of cumulus cells and oocytes during in vitro maturation. Funding from Faculty of Veterinary Sciences, Universidad Austral de Chile, MECESUP AUS-0005, AUS-0601, and DID D-2006-24 and from Universidad Católica de Temuco, research grant 2007 DGI-CDA-04.


2019 ◽  
Vol 31 (1) ◽  
pp. 140
Author(s):  
F. Salerno ◽  
M. Rubessa ◽  
B. Gasparrini ◽  
M. Wheeler

It is known that cryopreservation triggers spindle disassembly, increased aneuploidy risk, decreased post-thaw survival, fertilization, and embryo development. We hypothesised that a treatment with D2O before vitrification would slow down oocyte metabolism and reduce ice crystal formation by replacing water inside the cells. The aim of the study was to evaluate the effect of a 4-h treatment with different D2O concentrations (0, 3, 15, and 30%) on cryotolerance of bovine in vitro-matured oocytes. Abattoir-derived bovine oocytes were matured in vitro for 20h in TCM-199 medium with 15% of bovine serum (BS), 0.5µg mL−1 of FSH, 5µg mL−1 of LH, 0.8mM l-glutamine, and 50µg mL−1 of gentamicin at 39°C with 5% of CO2 and randomly divided into 5 experimental groups. A group of non-vitrified oocytes was used as the fresh oocyte control group, whereas the remaining oocytes were incubated for 4h in in vitro maturation medium with 0% (vitrified control; n=205), 3% (n=205), 15% (n=205), and 30% D2O (n=205) before vitrification. The experiment was repeated 4 times. Oocytes were denuded in HEPES-buffered TCM-199 (H199)+5% BS and vitrified using a cryotop freezing straw. The oocytes were incubated in 200μL of H199+20% BS with 7.5% ethylene glycol and 7.5% dimethyl sulfoxide for 3min. After that, oocytes were collected in 50μL of H199+20% fetal bovine serum with 15% ethylene glycol+15% dimethyl sulfoxide and 0.5M sucrose for 20s and plunged into LN2. One month later, oocytes were warmed in thawing media with decreasing concentrations of sucrose (1.35M to 0.31M) and then placed into in vitro maturation medium for 2h before IVF. Matured oocytes were IVF and cultured according to standard procedures (Rubessa et al. 2011 Theriogenology 76, 1347-1355). Cleavage and blastocyst rates were evaluated after 7 days of culture. Data were analysed using the GLM procedure of SPSS (SPSS Inc., Chicago, IL, USA). The least statistical difference post-hoc test was used to perform statistical multiple comparison. The α-level was set at 0.05. As expected, both cleavage [60.5±4.6 (fresh control); 36.9±2.6 (0% D2O); 46.3±3.7 (3% D2O); 31.6±2.4 (15% D2O); and 24.4±2.6 (30% D2O)] and blastocyst rates [25.7±0.8 (fresh control); 9.0±0.8 (0% D2O); 9.0±0.7 (3% D2O); 3.6±0.2 (15% D2O); and 4.3±0.8 (30% D2O)] decreased in all vitrified groups compared with the fresh control group. Within vitrified oocytes, cleavage rate increased (P&lt;0.05) with 3% D2O treatment compared with the other groups. However, pretreatment with higher (15-30%) D2O concentrations decreased (P&lt;0.05) blastocyst rates of vitrified-warmed oocytes. In conclusion, a pretreatment with low concentrations (3%) of D2O improved the cleavage rate of bovine vitrified-warmed oocytes, suggesting a potential beneficial effect, whereas deleterious effects were observed using the higher concentrations. Therefore, further studies are required to assess a potential use of D2O to improve oocyte cryotolerance, likely testing different incubation times.


2006 ◽  
Vol 18 (2) ◽  
pp. 167
Author(s):  
C. Yamada ◽  
M. D. Goissis ◽  
H. V. A. Caetano ◽  
A. R. S. Coutinho ◽  
M. E. O. A. Assumpção ◽  
...  

The cryopreservation of bovine oocytes remains a challenge despite significant reported progress. Immature bovine oocytes have a complex structure and the conventional cryoprotectants (penetrating cryoprotectants, sugars, and macromolecules) appear to be not sufficient to preserve them efficiently during freezing. Studies on semen and fibroblast cryopreservation indicate that amino acids, particularly l-glutamine, protect enzymes during freezing and increase the post-thaw viability. Therefore, the amino acids may optimize oocyte cryopreservation when associated with conventional cryoprotectants. This work evaluated the effect of l-glutamine on cryopreservation of immature bovine oocytes after in vitro maturation. Oocytes with homogeneous cytoplasm and several cumulus cell layers from slaughterhouse ovaries were distributed randomly in three groups: non-vitrified control, vitrified control, and vitrified with l-glutamine. Oocytes from vitrified groups were exposed for 10 min to PBS + 10% FCS + 10% ethylene glycol (EG) + 0.25 m trehalose (T), and for 30 s to PBS + 10% FCS + 25% EG + 25% dimethylsulfoxide + 0.5 m T at room temperature, adding 80 mm l-glutamine for the third group. Oocytes were loaded into OPS and plunged in liquid nitrogen. For thawing, OPS were immersed in PBS + 10% FCS + 10% EG + 1 m T for three min. Oocytes werethen placed in PBS + 10% FCS + 0.5 m T and in PBS + 10% FCS, remaining three min in each solution. For in vitro maturation, oocytes were washed three times on holding medium (TCM-HEPES + FCS + pyruvate + gentamycin), washed three times in maturation medium (TCM-bicarbonate + FCS + pyruvate + gentamycin + hCG + FSH + estradiol), and cultured in microdrops (90 μL) of maturation medium covered with mineral oil at 38.5°C under 5% CO2 in air and high humidity for 24 h. Oocytes were denuded, fixed in paraformaldehyde and triton, stained with Hoechst 33342, and evaluated under epifluorescence microscopy. Oocytes at metaphase II were considered matured. The group vitrified with l-glutamine had a significantly higher maturation rate than the group vitrified without l-glutamine; however, both had significantly lower maturation rates than the non-vitrified control group. In conclusion, l-glutamine improved the viability of vitrified oocytes. Table 1. Oocyte maturation rates of non-vitrified control, vitrified control, and vitrified with glutamine groups This work was supported by FAPESP 03/08543-1.


2015 ◽  
Vol 27 (1) ◽  
pp. 124 ◽  
Author(s):  
T. Somfai ◽  
N. T. Men ◽  
H. Kaneko ◽  
J. Noguchi ◽  
S. Haraguchi ◽  
...  

Cryotop and solid surface vitrification are frequently used methods for the cryopreservation of porcine oocytes. These methods differ not only in the vitrification carrier but also in the cryoprotectant (CPA) treatment including the type of sugar, permeable CPA (pCPA) combinations, and the equilibration regimen. This study compared the distinct points of CPA treatment of these 2 methods to determine the optimum CPA treatment for the solid surface vitrification of immature porcine oocytes. We vitrified and warmed follicular cumulus-oocyte complexes by our method (Somfai et al. 2014 PLoS One 9, e97731). In each experiment, the vitrification solution consisted of 50 mg mL–1 polyvinyl pyrrolidone, 0.3 M of the actual sugar, and 35% [v/v] in total of the actual pCPA combination (depending on the experiment). After warming, the cumulus-oocyte complexes were subjected to in vitro maturation, IVF, and embryo culture (Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041). Oocyte survival was assessed after IVF by morphological evaluation, and live oocytes were subjected to in vitro embryo culture. Cleavage and blastocyst rates were calculated from cultured oocytes on Day 2 (Day 0 = IVF) and Day 6, respectively. Each experiment was replicated at least 3 times. Results were analysed by ANOVA. In Experiment 1, we compared trehalose (n = 416) and sucrose (n = 440) as supplementations during vitrification and warming (0.3 M and 0.4 M of each, respectively). There was no significant difference between oocytes vitrified with trehalose or sucrose in terms of survival, cleavage, and blastocyst development (83.2% v. 80.3%, 39.7% v. 42.4%, and 3.6% v. 5.9%, respectively). Thus, vitrification and warming media were supplemented with sucrose thereafter. In Experiment 2, we compared 1 : 1 combinations of ethylene glycol with propylene glycol (EG+PG group, n = 452) and ethylene glycol with dimethyl sulfoxide (EG+DMSO group, n = 465) used as pCPA for equilibration (4% [v/v] pCPA in total for 15 min) and vitrification (35% [v/v] pCPA in total for 30 s). Oocyte survival rate was higher (P < 0.05) in the EG+PG group compared with the EG+DMSO group (73.8% v. 51.1%, respectively); however, cleavage and blastocyst development rates of surviving oocytes were not significantly different between the 2 groups (30.5% v. 44.5% and 4.1% v. 6.3%, respectively). In Experiment 3, we compared an equilibration treatment in 4% [v/v] of EG+PG for 13 to 15 min (regimen A, n = 368) with an equilibration in 15% [v/v] of EG+PG for 5 to 7 min (regimen B, n = 363) for oocyte vitrification. Survival, cleavage, and blastocyst development rates were higher (P < 0.01) for oocytes vitrified using regimen A compared with those vitrified using regimen B (82.5% v. 22.7%, 24.0% v. 7.7%, and 3.2% v. 0%, respectively). In conclusion, trehalose and sucrose are equally effective during vitrification and warming, the combination of EG+PG as pCPA is superior to EG+DMSO, and equilibration in 4% pCPA for 13 to 15 min is superior to that in 15% pCPA for 5 to 7 min for the vitrification of immature porcine oocytes.This work was partly supported by JSPS KAKENHI Grant Number 26870839.


2019 ◽  
Vol 31 (1) ◽  
pp. 213
Author(s):  
J. Keim ◽  
Y. Liu ◽  
I. Polejaeva

In vitro maturation (IVM) is an important process in the in vitro production of embryos. It has been recently shown that 3 cytokines: fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), and insulin-like growth factor 1 (IGF1) have increased the efficiency of IVM, blastocyst production, and in vivo development in pig (Yuan et al. 2017 Proc. Natl. Acad. Sci. USA 114, E5796-E5804). In vitro maturation in medium supplemented with cytokines doubled the blastocyst rate and quadrupled the litter size when transferred. It was observed that the addition of cytokines to IVM medium had an effect on the regulation of pMAPK1/3, cumulus cell expansion, and transzonal projections in cumulus-oocyte complexes (COC). This study was designed to assess the effect of these 3 cytokines on IVM in bovine oocytes and their consecutive development to blastocyst. Intracellular glutathione level (GSH), frequently used as an indicator of metaphase II (MII) oocyte quality, was also evaluated. The COC were retrieved from abattoir-derived ovaries and matured for 21h in either our standard maturation medium [TCM-199 (Gibco/Life Technologies, Grand Island, NY, USA), containing 10% fetal bovine serum, 0.5µg mL−1 FSH, 5µg mL−1 LH, and 100U mL−1 penicillin/streptomycin] or maturation medium supplemented with 20ng mL−1 human LIF, 20ng mL−1 human IGF1, and 40ng mL−1 human FGF2. After IVM, COC were placed in fertilization medium and incubated with frozen-thawed sperm for 20h. Cumulus cells were removed from fertilized COC and cultured in SOF culture medium at 38.5°C in 5% CO2/humidified air. Cleavage and blastocyst rates were assessed at 48h and Day 8 post-IVF, respectively. To assess GSH level, MII oocytes were incubated in 20 µM CellTracker Blue CMF2HC (Thermo Fisher Scientific, Waltham, MA, USA) and observed under blue fluorescent light. All statistical analysis was performed using one-way ANOVA and data are presented as mean±s.e.m. The MII rate, assessed by the presence of the first polar body, was significantly higher in the maturation medium supplemented with cytokines compared with the control medium (167/202; 82.4±2.02% v. 136/198; 68.8±1.1%; P&lt;0.05, 4 replicates). For IVF, no statistical difference was found in the cleavage rate between oocytes matured in the medium supplemented with cytokines compared with control medium (351/473; 74.3±4.86% v. 358/573; 63.9±4.03%; P&gt;0.05, 5 replicates), respectively. However, a significant increase in blastocyst rate was observed in the cytokine-containing medium (64/351; 17.7±2.06%) compared with the control group (42/358; 11.0±1.96%; P&lt;0.05, 5 replicates). Furthermore, our preliminary data indicate an increase in GSH in MII oocytes matured in the cytokine-containing medium. In conclusion, the addition of FGF2, LIF, and IGF1 to maturation media improves bovine IVM efficiency and quality of the MII oocytes, leading to a greater blastocyst development rate. Supported by RFBR (18-29-07089) and UAES (1343).


2024 ◽  
Vol 84 ◽  
Author(s):  
A. Azam ◽  
R. Ejaz ◽  
S. Qadeer ◽  
S. Irum ◽  
A. Ul-Husna ◽  
...  

Abstract The objective of the current study was to investigate the synergistic impact of α-Tocopherol and α-Linolenic acid (100 µM) on IVM and IVC of Nili Ravi buffalo oocytes. Oocytes were obtained from the ovaries of slaughtered buffaloes within two hours after slaughter and brought to laboratory. Buffalo cumulus oocyte complexes were placed randomly in the five experimental groups included; GROUP 1: Maturation media (MM) + 100 µM ALA (control), GROUP 2: MM + 100 µM ALA + 50μM α-Tocopherol, GROUP 3: MM + 100 µM ALA + 100μM α-Tocopherol, GROUP 4: MM + 100 µM ALA + 200 μM α-Tocopherol and GROUP 5: MM + 100 µM ALA + 300 μM α-Tocopherol under an atmosphere of 5% CO2 in air at 38.5 °C for 22-24 h. Cumulus expansion and nuclear maturation status was determined (Experiment 1). In experiment 2, oocytes were matured as in experiment 1. The matured oocytes were then fertilized in Tyrode’s Albumin Lactate Pyruvate (TALP) medium for about 20 h and cultured in synthetic oviductal fluid (SOF) medium to determine effect of α-Linolenic acid (100 µM) and α-Tocopherol in IVM medium on IVC of presumptive zygotes. To study the effect of α-Linolenic acid (100 µM) in IVM media and increasing concentration of α-tocopherol in the culture media on early embryo development (Experiment 3), the presumptive zygotes were randomly distributed into the five experimental groups with increasing concentration of α-tocopherol in culture media. Higher percentage of MII stage oocytes in experiment 1(65.2±2.0), embryos at morula stage in experiment 2 (30.4±1.5) and experiment 3 (22.2±2.0) were obtained. However, overall results for cumulus cell expansion, maturation of oocyte to MII stage and subsequent embryo development among treatments remain statistically similar (P > 0.05). Supplementation of α-tocopherol in maturation media having α-Linolenic acid and/or in embryo culture media did not further enhance in vitro maturation of oocyte or embryo production.


Sign in / Sign up

Export Citation Format

Share Document