scholarly journals POTENSI TEKNOLOGI INSEMINASI BUATAN PADA PENINGKATAN PRODUKTIVITAS ITIK TURI LAMONGAN

2020 ◽  
Vol 8 (1) ◽  
pp. 82
Author(s):  
Tjuk Imam Restiadi ◽  
Tatik Hernawati ◽  
Dadik Rahardjo ◽  
Thomas V. Widiyatno

Duck is one of the most poultry that potential can be best developed for its productivity to be used for meat and eggs. The obstacles faced by farmers include productivity of low and not meat and duck eggs. Application of science and technology through the development of reproductive technology of Artificial Insemination (AI) by conducting cross-breeding. The application to cross ducks is very beneficial because in addition to being economical it is also efficient. AI duck is very easy to apply and fast, does not require a complicated and long process as in large livestock. Ducks from artificial insemination are produced in Turi local female ducks (Anas plathirinchos) with plump males (Cairina moschata). The reason for the crossing is because the duck man has a body size that is too large compared to the local duck, so it can produce offspring with rapid growth and large body size. The conclusion is that duck farming with IB in Tawangrejo Turi Lamongan is useful for increasing body weight and productivity.

2019 ◽  
Vol 95 (2) ◽  
pp. 673-678 ◽  
Author(s):  
Milan Vrtílek ◽  
Jakub Žák ◽  
Matej Polačik ◽  
Radim Blažek ◽  
Martin Reichard

2009 ◽  
Vol 37 (3) ◽  
pp. 164-174 ◽  
Author(s):  
Cécile E. Duchesnes ◽  
Jürgen K. Naggert ◽  
Michele A. Tatnell ◽  
Nikki Beckman ◽  
Rebecca N. Marnane ◽  
...  

The study of spontaneous mutations in mice over the last century has been fundamental to our understanding of normal physiology and mechanisms of disease. Here we studied the phenotype and genotype of a novel mouse model we have called the New Zealand Ginger (NZG/Kgm) mouse. NZG/Kgm mice are very large, rapidly growing, ginger-colored mice with pink eyes. Breeding NZG/Kgm mice with CAST/Ei or C57BL/6J mice showed that the ginger coat colour is a recessive trait, while the excessive body weight and large body size exhibit a semidominant pattern of inheritance. Backcrossing F1 (NZG/Kgm × CAST/Ei) to NZG/Kgm mice to produce the N2 generation determined that the NZG/Kgm mouse has two recessive pigmentation variant genes ( oca2 p and tyrp-1 b) and that the tyrp-1b gene locus associates with large body size. Three coat colors appeared in the N2 generation; ginger, brown, and dark. Strikingly, N2 male coat colour associated with body weight; the brown-colored mice weighed the most followed by ginger and then dark. The male brown coat-colored offspring reached adult body weights indistinguishable from NZG/Kgm males. The large NZG/Kgm mouse body size is a result of excessive lean body mass since these mice are not obese or diabetic. NZG/Kgm mice exhibit an unusual pattern of fat distribution; compared with other mouse strains they have disproportionately higher amounts of subcutaneous and gonadal fat. These mice are susceptible to high-fat diet-induced obesity but are resistant to high-fat diet-induced diabetes. We propose NZG/Kgm mice as a novel model to delineate gene(s) that regulate 1) growth and metabolism, 2) resistance to Type 2 diabetes, and 3) preferential fat deposition in the subcutaneous and gonadal areas.


2020 ◽  
Vol 29 (2) ◽  
pp. 278-283
Author(s):  
S.G. Ermilov

The oribatid mite subgenus Scheloribates (Topobates) Grandjean, 1958, is recorded from the Neotropical region for the first time. A new species of this subgenus is described from the leaf litter collected in Cayo Agua Island, Panama. Scheloribates (Topobates) panamaensis sp. nov. differs from its related species by the very large body size and presence of a strong ventrodistal process on the leg femora II–IV.


PLoS ONE ◽  
2009 ◽  
Vol 4 (1) ◽  
pp. e3876 ◽  
Author(s):  
C. Jaco Klok ◽  
Jon F. Harrison

2019 ◽  
Vol 41 (3) ◽  
Author(s):  
Nguyen Ngoc Chau

Bakernema enormese sp. n., collected from rhizosphere of forest wood trees in Muong Phang, Dien Bien Province (north Vietnam) is described and illustrated. The new species is characterized by large body size and stylet. In general, this new species is close to two existing species of the same genus, B. inaequale and B. dauniense by cuticle structure in transparent membranous projections which appear in lateral view as spine-like structures on each annulus. These structure arranged into several rows along the body. In morphology, the new species differs from B. inaequale and B. dauniense  by body and stylet length, i.e. 609–842 µm and 143.5–150 µm vs. 391–578 µm and 59–74 µm for B. inaequale and vs. 391–461 µm and 65–74 µm for B. dauniense. In addition, new species can be distinguished from B. inaequale by the longer membranous projection, 8–12 vs. 6–10 µm and vagina shape, curved vs. sigmoid. From B. dauniense, the new species differs by the much longer membranous projection, 8–12 vs. 1.4–2.2 µm and less number annules between vulva and tail end (RV), 3–4 vs. 7.8 annules. The presence of Criconema (Nothocriconemella) graminicola Loof, Wouts & Yeates, in Vietnam with morphometrics, illustrators and remarks given.


2009 ◽  
Vol 6 (2) ◽  
pp. 265-269 ◽  
Author(s):  
James C. Lamsdell ◽  
Simon J. Braddy

Gigantism is widespread among Palaeozoic arthropods, yet causal mechanisms, particularly the role of (abiotic) environmental factors versus (biotic) competition, remain unknown. The eurypterids (Arthropoda: Chelicerata) include the largest arthropods; gigantic predatory pterygotids (Eurypterina) during the Siluro-Devonian and bizarre sweep-feeding hibbertopterids (Stylonurina) from the Carboniferous to end-Permian. Analysis of family-level originations and extinctions among eurypterids and Palaeozoic vertebrates show that the diversity of Eurypterina waned during the Devonian, while the Placodermi radiated, yet Stylonurina remained relatively unaffected; adopting a sweep-feeding strategy they maintained their large body size by avoiding competition, and persisted throughout the Late Palaeozoic while the predatory nektonic Eurypterina (including the giant pterygotids) declined during the Devonian, possibly out-competed by other predators including jawed vertebrates.


Paleobiology ◽  
1986 ◽  
Vol 12 (1) ◽  
pp. 89-110 ◽  
Author(s):  
Steven M. Stanley

The extinction of a species represents reduction of both geographic range and population size to zero. Most workers have focused on geographic range as a variable strongly affecting the vulnerability of established species to extinction, but Lyellian percentages for Neogene bivalve faunas of California and Japan suggest that population size is a more important variable along continental shelves. The data employed to reach this conclusion are Lyellian percentages for latest Pliocene (∼2 ma old) bivalve faunas of California and Japan (N = 245 species). These regions did not suffer heavy extinction during the recent Ice Age, and for each region the Lyellian percentage is 70%–71%.Discrepancies in population size appear to explain the following differences in survivorship to the Recent (Lyellian percentage) for three pairs of subgroups: (1) burrowing nonsiphonate species (42%) versus burrowing siphonate species (84%), which suffer less heavy predation; (2) burrowing nonsiphonate species of small size (73%) versus burrowing nonsiphonate species of large body size (96%); (3) Pectinacea (30%) versus other epifauna (71%), which suffer less heavy predation. During the Mesozoic Era, when predation was less effective in benthic settings, mean species duration for the Pectinacea was much greater (∼20 ma).Along the west coast of North and Central America, mean geographic range is greater for siphonate species of large body size than for siphonate species of small body size and greater still for pectinacean species. These ranges are inversely related to mean species longevity for the three groups, which indicates that geographic range is not of first-order importance in influencing species longevity. Species with nonplanktotrophic development neither exhibit narrow geographic ranges along the west coast of North and Central America nor have experienced high rates of extinction in California and Japan.Rates of extinction are so high for Neogene pectinaceans and nonsiphonate burrowers that without enjoying high rates of speciation these groups could not exist at the diversities they have maintained during the Neogene Period. They are apparently speciating rapidly because of the fission effect: the relatively frequent generation of new species from populations that are fragmented by heavy predation. Thus, ironically, there may be a tendency for high rates of speciation to be approximately offset by high rates of extinction. Only if mean population size for species in a particular group becomes extremely small is it likely to result in a high rate of extinction and a low rate of speciation—and hence a dramatic decline of the group. The fission effect may contribute to the general correlation in the animal world between rate of speciation and rate of extinction.


2017 ◽  
Vol 92 (2) ◽  
pp. 254-271 ◽  
Author(s):  
S. Christopher Bennett

AbstractA new juvenile specimen ofPteranodonfrom the Smoky Hill Chalk Member of the Niobrara Formation of western Kansas had an estimated wingspan in life of 1.76 m, ~45% smaller than the smallest previously known specimens, but does not differ in morphology from larger specimens. Its presence indicates that juveniles were capable of flying long distances, so it falsifies the interpretation ofPteranodonas growing rapidly to adult size under parental care before flying. Instead juveniles were precocial, growing more slowly to adult size while flying and feeding independently for several years before going to sea. Because juveniles are otherwise unknown in the Smoky Hill Chalk Member, they must have occupied different environments and ecological niches than adults; thusPteranodonexhibited ontogenetic niches. Evidence is presented that most other pterosaurs (e.g.,Rhamphorhynchus,Pterodactylus,Anhanguera) also exhibited various ontogenetic niches, which, along with their large body size, suggests that pterosaur taxonomic diversity was rather low, like that of crocodilians.


Sign in / Sign up

Export Citation Format

Share Document