scholarly journals PENGARUH LSA (LOBE SEPARATION ANGEL) PADA CAMSHAFT TERHADAP UNJUK KERJA MESIN JUPITER Z1

JTAM ROTARY ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 43
Author(s):  
Anasri Habib ◽  
Abdul Ghofur

Penelitian ini bertujuan untuk mengetahui performa mesin terbaik dari perubahan angel separasi lobe pada camshaft, dan mengetahui diagram timing katup dari setiap modifikasi camshaft. Penelitian dilakukan dengan mengubah profil poros bubungan untuk menghasilkan waktu katup dan sudut preparasi lobus yang berbeda, kemudian dilakukan pengujian menggunakan dynotest untuk mendapatkan performa mesin Jupiter z1. Hasil penelitian menggunakan dynotest untuk mengetahui performa mesin, dari hasil pengujian mendapatkan hasil tertinggi dari setiap profil camshaft yaitu pada tenaga LSA 103.25o (standar) sebesar 9.035 Hp dan torsi 8.093 Nm, pada tenaga LSA 105.5o Dengan tenaga 9.162 Hp dan torsi 9.062 Nm, LSA 102.5o bertenaga 9.036 Hp dan torsinya 8.949 Nm. Pengaruh LSA pada camshaft standar dan modifikasinya yaitu pada camshaft dengan LSA 105.5o tenaga bertambah 1,3% dan torsi bertambah 10.7% sedangkan tenaga LSA 102.5o bertambah 0.01% dan torsi bertambah 9,5 %. Sehingga performa terbaik didapatkan pada camshaft dengan LSA 105.5o.This study aims to determine the best engine performance from changes in the angel separation lobe on the camshaft, and to find out the valve timing diagram of each camshaft modification. The research was carried out by changing the camshaft profile to produce different valve timing and lobes preparation angles, then do a test using dynotest to get Jupiter z1 engine performance. The results of the study used dynotest to determine engine performance, from the results of testing to get the highest results from each camshaft profile, namely the LSA 103.25o (standard) power of 9.035 Hp and torque of 8.093 Nm, on LSA 105.5o power is 9,162 Hp and torque is 9,062 Nm, the LSA 102.5o power is 9.036 Hp and torque is 8.949 Nm. The effect of LSA on the standard camshaft and modification, namely on the camshaft with LSA 105.5o, the power increased by 1.3% and torque increased by 10.7% while the LSA 102.5o the power increased by 0.01% and torque increased by 9,5%. So that the best performance is obtained on the camshaft with LSA 105.5o.

Author(s):  
P. L. Dartnell ◽  
C. L. Goodacre ◽  
P. V. Lamarque

A Heron combustion chamber engine of 2 litre capacity has been utilized to investigate the effect of combustion chamber shape, increased mixture movement, valve timing, mixture formation, and reaction in the exhaust system on engine performance and level of exhaust emissions using the seven-mode U.S. Federal cycle. Such factors as carburettor weakening and limitation of intake manifold vacuum during overrun have been included in this investigation, and it has been shown that it is possible to reduce exhaust emissions and also satisfy the current U.S. requirements with an engine giving acceptable performance, improved economy, and unaffected reliability. Much of the information reported may be negative in terms of improvement to exhaust emissions by detailed engine design. Nevertheless, some positive conclusions have been reached as a result of this work, and it is hoped that this will draw forth more informed discussion than the authors have been able to assemble from the work attempted with one basic engine.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 759 ◽  
Author(s):  
Kun-Ho Chen ◽  
Yei-Chin Chao

The present study provides a feasible strategy for minimizing automotive CO2 emissions by coupling the principle of the Atkinson cycle with the use of bioethanol fuel. Motor cycles and scooters have a stroke to bore ratio of less than unity, which allows higher speeds. The expansion to compression ratio (ECR) of these engines can be altered by tuning the opening time of the intake and exhaust valves. The effect of ECR on fuel consumption and the feasibility of ethanol fuels are still not clear, especially for short stroke engines. Hence, in this study, the valve timing of a short stroke engine was tuned in order to explore potential bioethanol applications. The effect of valve timing on engine performance was theoretically and experimentally investigated. In addition, the application of ethanol/gasoline blended fuels, E3, E20, E50, and E85, were examined. The results show that consumption, as well as engine performance of short stroke motorcycle engines, can be improved by correctly setting the valve controls. In addition, ethanol/gasoline blended fuel can be used up to a composition of 20% without engine modification. The ignition time needs to be adjusted in fuel with higher compositions of blended ethanol. The fuel economy of a short stroke engine cannot be sharply improved using an Atkinson cycle, but CO2 emissions can be reduced using ethanol/gasoline blended fuel. The present study demonstrates the effect of ECR on the performance of short stroke engines, and explores the feasibility of applying ethanol/gasoline blended fuel to it.


2009 ◽  
Vol 12 (14) ◽  
pp. 77-85
Author(s):  
Cong Thanh Huynh ◽  
Kang Joon-Kyoung ◽  
Noh Ki-Cholo ◽  
Lee Jong-Tai ◽  
Mai Xuan Pham

The development of a hydrogen-fueled engine using an external mixture (e.g., using port injection) with high efficiency and high power is dependent on the control of backfire. This work has developed a method to control backfire by reducing the valve overlap period. For this goal, a single-cylinder hydrogen-fueled research engine with a mechanical continuous variable valve timing (MCVVT) system was developed. This facility provides a wide range of valve overlap periods that can be continuously and independently varied during firing operation. In experiments, the behavior of backfire occurrence and engine performance are determined as functions of the valve overlap period for fuel-air equivalence ratios between 0.25 and 1.2. The results showed that the research engine with the MCVVT system has similar performance to a conventional engine, and is especially effective in controlling the valve overlap period. The obtained results demonstrate that decreasing the valve overlap period may be one of the methods for controlling backfire in a H engine. Also, a method for compensating performance loss due to shortened valve overlap period is recommended.


2017 ◽  
Vol 11 (8) ◽  
pp. 79
Author(s):  
Jehad Ahmad Yamin

A theoretical investigation on the pressure wave action of the manifolds of a four-stroke, direct injection (hereinafter referred to as DI), water-cooled, 4-stroke, diesel engine with variable stroke length was carried out.  The study was conducted over wide range of speeds (1000 - 3000 RPM at an increment of 500 RPM) and stroke lengths (130 mm to 210 mm at an increment of 20mm). The compression ratio was kept constant by adjusting the piston bowl volume. The study showed that shorter stroke lengths created favorable pressure waves in both inlet and exhaust manifolds at lower speeds, which resulted in improved engine volumetric and thermal efficiencies. At higher speeds, the larger strokes were favorable, however, due to less time available for the suction and exhaust strokes to be executed, the efficiencies were low. Advancing valve timing was one factor that improved the engine performance with larger stroke lengths.


Author(s):  
T. C. Huynh ◽  
J. K. Kang ◽  
K. C. Noh ◽  
Jong T. Lee ◽  
J. A. Caton

The development of a hydrogen-fueled engine using an external mixture (e.g., using port or manifold fuel injection) with high efficiency and high power is dependent on the control of backfire. This work has developed a method to control backfire by reducing the valve overlap period while maintaining or improving engine performance. For this goal, a single-cylinder hydrogen-fueled research engine with a mechanical continuous variable valve timing system was developed. This facility provides a wide range of valve overlap periods that can be continuously and independently varied during firing operation. By using this research engine, the behavior of backfire occurrence and engine performance are determined as functions of the valve overlap period for fuel-air equivalence ratios between 0.3 and 1.2. The results showed that the developed hydrogen-fueled research engine with the mechanical continuous variable valve timing system has similar performance to a conventional engine with fixed valve timings, and is especially effective in controlling the valve overlap period. Backfire occurrence is reduced with a decrease of the valve overlap period, and is also significantly decreased even under operating conditions with the same volumetric efficiency. These results demonstrate that decreasing the valve overlap period may be one of the methods for controlling backfire in a hydrogen-fueled engine while maintaining or improving performance.


Author(s):  
T. C. Huynh ◽  
J. K. Kang ◽  
K. C. Noh ◽  
Jong T. Lee ◽  
J. A. Caton

The development of a hydrogen-fueled engine using external mixture injection (e.g., using port or manifold fuel injection) with high efficiency and high power is dependent on the control of backfire. This work has developed a method to control backfire by reducing the valve overlap period while maintaining or improving engine performance. For this goal, a single-cylinder hydrogen-fueled research engine with a mechanical continuous variable valve timing system was developed. This facility provides a wide range of valve overlap periods that can be continuously and independently varied during firing operation. By using this research engine, the behavior of backfire occurrence and engine performance are determined as functions of the valve overlap period for fuel-air equivalence ratios between 0.3 and 1.2. The results showed that the developed hydrogen-fueled research engine with the mechanical continuous variable valve timing system has similar performance to a conventional engine with fixed valve timings, and is especially effective in controlling the valve overlap period. Backfire occurrence is reduced with a decrease in the valve overlap period, and is also significantly decreased even under operating conditions with the same volumetric efficiency. These results demonstrate that decreasing the valve overlap period may be one of the methods for controlling backfire in a hydrogen-fueled engine while maintaining or improving performance.


2012 ◽  
Vol 516-517 ◽  
pp. 628-633
Author(s):  
Sheng Ou Hu ◽  
Ren Xian Li

The performance of internal combustion engine can be improved by using variable valve timing technology. but how to get the optimal inlet/export valve open or close angles under various operating conditions still relies mainly on testing calibration method. By means of one-dimensional working process simulation method, the performance of a four cylinder diesel engine was simulated, and the influences of diffrent inlet/export valve timing on engine performances were compared. Optimum valve timing values and engine performances under thirty kinds of working conditions were gotton. After that, the engine performances compared with that without variable valve timing. Simulation results show that the engine performance, especially the emission performance, can be improved at all simulation working conditions. The method used in this paper may be a new way for calibration of optimal valve timing.


Sign in / Sign up

Export Citation Format

Share Document