scholarly journals Dry Matter Partitioning at Harvest and Yield of Maize (Zea mays L.) as Influenced by Integration of Various Nutrients

Author(s):  
R.K. Yadav ◽  
A. Verma ◽  
S.L. Yadav ◽  
H.K. Sumariya
1988 ◽  
Vol 68 (4) ◽  
pp. 935-940 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. W. BRUULSEMA

The response of rate and duration of kernel dry matter accumulation to temperatures in the range 10–25 °C was studied for two maize (Zea mays L.) hybrids grown under controlled-environment conditions. Kernel growth rates during the period of linear kernel growth increased linearly with temperature (b = 0.3 mg kernel−1 d−1 °C−1). Kernel dry weight at physiological maturity varied little among temperature treatments because the increase in kernel growth rate with increase in temperature was associated with a decline in the duration of kernel growth proportional to the increase in kernel growth rate.Key words: Zea mays L, period of linear kernel dry matter accumulation, controlled-environment conditions, kernel growth rate


2018 ◽  
Vol 44 (3) ◽  
pp. 359-356
Author(s):  
Mahta Haghjoo ◽  
Abdollah Bahrani

Out of 20, 40, 60 and 80 per cent moisture depletion 20% showed significantly higher grain yields, biological yield, chlorophyll a, b than the others. However, the highest contribution of stem and leaf dry matter remobilization in grain yield were obtained in 80% moisture depletion and 300 kg N/ha and the lowest one was found in the 20% moisture depletion and 150 kg N/ha. Nitrogen application increased all traits, however there were no significant difference between 250 and 300 kg N/ha.


Agriculture ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 75 ◽  
Author(s):  
Kim ◽  
Chemere ◽  
Sung

The objective of this study was to detect the historical dry matter yield (DMY) trend and to evaluate the effects of heavy rainfall events on the observed DMY trend of whole crop maize (WCM, Zea mays L.) using time-series analysis in Suwon, Republic of Korea. The climatic variables corresponding to the seeding to harvesting period, including the growing degree days, mean temperature, etc., of WCM along with the DMY data (n = 543) during 1982–2011, were used in the analysis. The DMY trend was detected using Autoregressive Integrated Moving Average with the explanatory variables (ARIMAX) form of time-series trend analysis. The optimal DMY model was found to be ARIMAX (1, 1, 1), indicating that the DMY trend follows the mean DMY of the preceding one year and the residual of the preceding one year with an integration level of 1. Furthermore, the SHGDD and SHHR were determined to be the main variables responsible for the observed trend in the DMY of WCM. During heavy rainfall events, the DMY was found to be decreasing by 4745.27 kg/ha (p < 0.01). Our analysis also revealed that both the intensity and frequency of heavy rainfall events have been increasing since 2005. The forecasted DMY indicates the potential decrease, which is expected to be 11,607 kg/ha by 2045. This study provided us evidence for the correlation between the DMY and heavy rainfall events that opens the way to provide solutions for challenges that summer forage crops face in the Republic of Korea.


1978 ◽  
Vol 56 (16) ◽  
pp. 1905-1908 ◽  
Author(s):  
S. C. Agarwala ◽  
C. P. Sharma ◽  
S. Farooq ◽  
C. Chatterjee

Molybdenum deficiency decreased the dry matter yield, tissue concentration of molybdenum, and chlorophyll content of corn (Zea mays L. cv. T.41) plants. Compared with the normal (control) plants, leaves of molybdenum-deficient plants had significantly lower activities of nitrate reductase, catalase, aldolase, and alanine aminotransferase and higher activities of peroxidase, β-glycerophosphatase, and ribonuclease. Within 72 h of supplying molybdenum (50 μM) to molybdenum-deficient plants, chlorophyll concentration, soluble protein, and activities of nitrate reductase, catalase, and alanine aminotransferase showed considerable recovery but the increase in the peroxidase activity was further enhanced. Supply of molybdenum to molybdenum-deficient plants did not significantly affect the activity of aldolase, ribonuclease, and β-glycerophosphatase.


Sign in / Sign up

Export Citation Format

Share Document