EFFECTS OF TEMPERATURE ON RATE AND DURATION OF KERNEL DRY MATTER ACCUMULATION OF MAIZE

1988 ◽  
Vol 68 (4) ◽  
pp. 935-940 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. W. BRUULSEMA

The response of rate and duration of kernel dry matter accumulation to temperatures in the range 10–25 °C was studied for two maize (Zea mays L.) hybrids grown under controlled-environment conditions. Kernel growth rates during the period of linear kernel growth increased linearly with temperature (b = 0.3 mg kernel−1 d−1 °C−1). Kernel dry weight at physiological maturity varied little among temperature treatments because the increase in kernel growth rate with increase in temperature was associated with a decline in the duration of kernel growth proportional to the increase in kernel growth rate.Key words: Zea mays L, period of linear kernel dry matter accumulation, controlled-environment conditions, kernel growth rate

1978 ◽  
Vol 58 (1) ◽  
pp. 189-197 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. B. DAYNARD

Studies were conducted in 1975 at Guelph, Ontario, to examine kernel growth and development at two positions on the ear of the maize (Zea mays L.) hybrids United-H106 and Funk’s G-4444. Development of kernels at the base and at the tip of the ear was studied from 2 wk before silk emergence to black layer formation. Kernels at the tip of the ear lagged 4–5 days in development behind kernels at the base of the ear during the period from the start of silk growth to the onset of LDMP (the period of linear dry matter accumulation of the kernels). Tip kernels on 25% of the ears of United-H106 ceased dry matter accumulation at the onset of LDMP. Differences in kernel dry weight at black layer formation between basal and tip kernels of Funk’s G-4444 ears, and ears of United-H106 in which tip-kernel growth had not ceased at the onset of LDMP could be attributed to a shorter duration of LDMP of tip kernels and a lower rate of tip-kernel dry matter accumulation during LDMP. LDMP of tip kernels did not stop at an earlier date than LDMP of basal kernels. The lower rate of tip-kernel dry matter accumulation during LDMP may be attributable to a lower volume of tip kernels at the onset of LDMP.


1978 ◽  
Vol 58 (1) ◽  
pp. 199-206 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. B. DAYNARD

Kernel development was studied in the maize (Zea mays L.) hybrids United-H106 and Funk’s G-4444, grown in a controlled-environment growth room. A method was employed in which husks were excised, and kernels were removed from the same set of ears at several subsequent sampling dates. This method did not affect the dry matter accumulation of the remaining kernels. Basal kernels (kernel numbers 6–15 in the row) and tip kernels (kernel numbers 31–40) were removed at 2-day intervals during the period from 10 to 20 days postsilking. Dry weight, ethanol-soluble sugar content, and starch content were determined for each sample. Accumulation of dry matter in the tip kernels ceased in a fraction of the United-H106 ears at the onset of the period of linear tip-kernel dry matter accumulation. Only small differences were observed in sugar content between growing and non-growing tip kernels of ears of United-H106. Starch appeared to continue to accumulate in kernels in which dry matter had ceased to accumulate. Except for a delay of approximately 2 days, the pattern of development of tip kernels in Funk’s G-4444 was similar to that of kernels at the base.


1966 ◽  
Vol 46 (2) ◽  
pp. 195-203 ◽  
Author(s):  
B. Stanfield ◽  
D. P. Ormrod ◽  
H. F. Fletcher

Effects of day/night temperature regimes from 7/4 to 32/24 °C on growth and development of Pisum sativum L. var. Dark Skin Perfection were studied in controlled-environment cabinets. Light intensity was about 1500 foot-candles and the photoperiod was 16 hours. Rate of plant development, in terms of nodes produced per day, increased steadily as the average temperature increased. Rate of stem elongation, however, was most rapid at 21/13 °C; and plant height was greatest at 16/10 °C. On a dry matter accumulation rate basis, vine growth decreased above and below a temperature optimum which shifted from 21/16 to 16/10 °C in the course of plant development. The combination of high day and high night temperatures caused an increase in the number of nodes to the first flower. Tillering was most prolific at the lower temperatures and was absent at 32 °C day temperatures. Pea yield decreased as temperature increased above 16/10 °C, due mainly to a reduction in the number of pods per plant.


1977 ◽  
Vol 4 (6) ◽  
pp. 857 ◽  
Author(s):  
MF Beardsell

Maize (Zea mays L. cv. XL45) plants were grown from seed in controlled-environment rooms. Twice-daily weighings of the plants and containers for 7 days reduced height, and removing plants from the rooms for two 20-min periods daily for 7 days gave significant reductions in stem and leaf dry weights and total leaf area. Transpiration rates were not affected by either of these treatments. Short-term removal from the rooms (up to 10 min daily) produced no significant reductions in plant characteristics. Measuring leaf lengths daily for 10 days resulted in significant reductions in stem dry weight and plant height. It is suggested that control plants should always be subjected to the same degree of handling as treated plants.


2013 ◽  
Vol 37 (1) ◽  
pp. 177-187 ◽  
Author(s):  
Michelli Fernandes Batista ◽  
Ismar Sebastião Moscheta ◽  
Carlos Moacir Bonato ◽  
Marcelo Augusto Batista ◽  
Odair José Garcia de Almeida ◽  
...  

Aluminum (Al) toxicity is one of the most limiting factors for productivity. This research was carried out to assess the influence of Al nutrient solution on plant height, dry weight and morphoanatomical alterations in corn (Zea mays L.) roots and leaves. The experiment was conducted in a greenhouse with five treatments consisting of Al doses (0, 25, 75, 150, and 300 µmol L-1) and six replications. The solutions were constantly aerated, and the pH was initially adjusted to 4.3. The shoot dry matter, root dry matter and plant height decreased significantly with increasing Al concentrations. Compared to the control plants, it was observed that the root growth of corn plants in Al solutions was inhibited, there were fewer lateral roots and the development of the root system reduced. The leaf anatomy of plants grown in solutions containing 75 and 300 µmol L-1 Al differed in few aspects from the control plants. The leaf sheaths of the plants exposed to Al had a uniseriate epidermis coated with a thin cuticle layer, and the cells of both the epidermis and the cortex were less developed. In the vascular bundle, the metaxylem and protoxylem had no secondary walls, and the diameter of both was much smaller than of the control plants.


1988 ◽  
Vol 68 (3) ◽  
pp. 823-827 ◽  
Author(s):  
D. H. WILCOX ◽  
I. N. MORRISON ◽  
G. MARSHALL

In controlled environment experiments diclofop methyl, difenzoquat, flamprop methyl, fluazifop-P and seythoxydim were applied to wild oat at the three-leaf stage at recommended rates 10 h before or after a single night of freezing (−4 °C) temperature. Herbicide efficacy, as determined by the change in post-treatment dry weight accumulation of treated wild oats during the ensuing 3 wk period, was unaffected by the freezing temperature. The dry matter accumulation of wild oat exposed to the −4 °C temperature was reduced by 10–20% compared to plants which were grown under a constant 15/5 °C day/night regime.Key words: Oat (wild), frost, diclofop methyl, flamprop methyl, difenzoquat, fluazifop-P, sethoxydim


Crop Science ◽  
1965 ◽  
Vol 5 (4) ◽  
pp. 365-367 ◽  
Author(s):  
C. O. Grogan ◽  
Patricia Sarvella ◽  
J. O. Sanford ◽  
H. V. Jordan

1989 ◽  
Vol 69 (2) ◽  
pp. 295-302 ◽  
Author(s):  
M. H. MILLER ◽  
G. K. WALKER ◽  
M. TOLLENAAR ◽  
K. G. ALEXANDER

Maize (Zea mays L.) was grown outdoors hydroponically and in soil to compare yields in the two systems and to determine the extent to which soil temperature and plant nutrition limit yield of soil-grown plants. The hydroponic system consisted of 22.5-L plastic pails filled with "Turface" to which nutrient solution was added at least twice daily. In all 3 yr dry-matter accumulation throughout the growing season was greater on the hydroponic system than in well-fertilized, irrigated sandy-loam soil when planting pattern and density were the same. Maximum aboveground dry matter and grain dry matter on the hydroponic system were 25.8 and 12.2 Mg ha−1, respectively. It is apparent that there is a soil-based constraint that limits aboveground dry-matter production to 75–85% of the potential with the aboveground environment in the region. Grain yield appears to be limited to a lesser extent. To determine the effect of root-medium temperature, growth in pails buried in the soil was compared to that in soil and in pails placed on the soil surface. Although the temperature of the buried pails was consistently lower than that in the aboveground pails and in the soil, dry matter accumulation was similar to that in the aboveground pails indicating that soil temperature was not a cause of the lower yield of the soil-grown plants. There was no evidence that plants growing on the highly fertilized soil were nutrient limited at any growth stage. Other studies have indicated that transient water stress on soil-grown plants will not explain the difference in growth on the two systems. Key words: Maize, hydroponics, soil limitations, soil temperature, nutrition


Author(s):  
Suhail Fayaz ◽  
Raihana Habib Kanth ◽  
Tauseef Ahmad Bhat ◽  
M. Anwar Bhat ◽  
Bashir Ahmad Alie ◽  
...  

Field experiment was conducted at Faculty of Agriculture, SKUAST-Kashmir, Wadura, Jammu and Kashmir during kharif seasons of 2019 and 2020 to assess the effect of precision nitrogen management through LCC on nutrient content and uptake of maize (Zea mays L.) under temperate conditions of Kashmir. The experiment comprised of three maize hybrids (SMH-2, Vivek-45 and Kanchan-517) assigned to main plots and seven Precision N management viz. nitrogen splits @ 20 and 30 kg N ha-1 managed through LCC (LCC scores of 3, 4 and 5), recommended nitrogen level and control in subplots. The treatments were replicated thrice in a split plot design. The results revealed that LCC ≤ 5 @ 30 kg N ha-1 recorded highest dry matter accumulation and periodic N uptake at all the stages of growth and highest P and K uptake by grain and straw at harvest. Further, highest dry matter accumulation and uptake of NPK was recorded in cultivar SMH-2 as compared to Vivek-45 and Kanchan-517 during 2019 and 2020 respectively. LCC based N application proved effective in increasing dry matter and nutrient content of maize hybrids.


Author(s):  
V. K. Meena ◽  
B. P. Meena ◽  
G. S. Chouhan ◽  
B. L. Meena

A field experiment was carried out during summer seasons of two consecutive years 2010 and 2011 to assess the effect of irrigation levels and agrochemicals. Application of eight irrigations (at seedling, six leaf, knee-high, before tasseling, 50% tasseling, 50% silking, grain formation and grain filling stages) significantly improved plant height at harvest over rest of irrigation treatments during both the years. On pooled mean basis, the magnitude of increase in plant height at harvest due to eight irrigations was in the order of 28.41, 18.49, 10.96 and 4.31 per cent over four, five, six and seven irrigations, respectively. Dry matter accumulation at 50 Day after sowing and at harvest significantly improved with eight and seven irrigations over four, five and six irrigations during both the years of the study.


Sign in / Sign up

Export Citation Format

Share Document