scholarly journals Effect of Heat Stress and Amelioration by Antioxidants on Expression Profile of Pro- and Anti-Apoptotic Genes in in vitro Matured Bovine Oocytes

Author(s):  
Jafrin Ara Ahmed ◽  
Nawab Nashiruddullah ◽  
Devojyoti Dutta ◽  
Iftikar Hussain ◽  
Anubha Baruah ◽  
...  
2017 ◽  
Vol 52 ◽  
pp. 48-51 ◽  
Author(s):  
M Vendrell-Flotats ◽  
N Arcarons ◽  
E Barau ◽  
M López-Béjar ◽  
T Mogas

Zygote ◽  
2011 ◽  
Vol 20 (3) ◽  
pp. 249-259 ◽  
Author(s):  
Hisashi Nabenishi ◽  
Hiroshi Ohta ◽  
Toshihumi Nishimoto ◽  
Tetsuo Morita ◽  
Koji Ashizawa ◽  
...  

SummaryIn the present study, we investigated the effects of various concentrations of cysteine (0.0, 0.6, 1.2 and 1.8 mM) added to the maturation medium on nuclear maturation and subsequent embryonic development of bovine oocytes exposed to heat stress (HS: set at 39.5 °C for 5 h, 40.0 °C for 5 h, 40.5 °C for 6 h, and 40.0 °C for 4 h versus 38.5 °C for 20 h as the control group). This regime mimicked the circadian rhythm of the vaginal temperature of lactating dairy cows during the summer season in southwestern Japan. Moreover, we also evaluated the oocyte's reactive oxygen species (ROS) and glutathione (GSH) levels and the apoptosis levels of the oocytes and cumulus cells in the presence or absence of 1.2 mM cysteine. As a result, HS in the without-cysteine group significantly suppressed (p < 0.05) both the nuclear maturation rate up to the metaphase (M)II stage and the blastocyst formation rate compared with that of the control group. In addition, this group showed significantly higher (p < 0.05) ROS levels and significantly lower (p < 0.05) GSH levels than those of the control group. Moreover, the level of TdT-mediated dUTP nick end labelling (TUNEL)-positive cumulus cells in the HS without-cysteine group was significantly higher (p < 0.05) than that of the control group. However, the addition of 1.2 mM cysteine to the maturation medium restored not only the nuclear maturation, blastocyst formation rates and GSH contents, but also increased the ROS and TUNEL-positive levels of the cumulus cells, but not oocytes, to that of the control group. These results indicate that the addition of 1.2 mM cysteine during in vitro maturation (IVM) may alleviate the influence of heat stress for oocyte developmental competence by increasing GSH content and inhibiting the production of oocyte ROS followed by apoptosis of cumulus cells.


Zygote ◽  
2001 ◽  
Vol 9 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Sheldon J. Kawarsky ◽  
W. Allan King

Effects of elevated in vitro temperature on in vitro produced early bovine embryos were analysed in order to determine its impact on the expression of heat shock protein 70 (hsp70). In vitro matured bovine oocytes, 2-cell and 8-cell embryos, and day 9 hatched blastocysts subjected to control and elevated temperature conditions were analysed by semiquantitative reverse transcription polymerase chain reaction methods for hsp70 mRNA expression. Results revealed the expression of hsp70 mRNA under control conditions and that early embryos can respond to heat stress by transcribing hsp70 mRNA. Confocal laser scanning microscopy used to localise the hsp70 protein in oocytes and embryos revealed that the distribution of hsp70 in the ooplasm of immature and mature oocytes is unaffected by exposure to elevated temperatures and that this protein was closely associated with the meiotic spindle, indicating its possible role in stabilising this structure. In 8-cell embryos derived under control conditions, hsp70 was evenly distributed in the cytoplasm but appeared as aggregates in some embryos exposed to elevated temperature. In heat-stressed hatched blastocysts, a more even distribution was noted following heat stress relative to corresponding controls, indicating their competence to respond to elevated temperature.


2019 ◽  
Vol 31 (1) ◽  
pp. 183
Author(s):  
F. A. Diaz ◽  
E. J. Gutierrez ◽  
B. A. Foster ◽  
P. T. Hardin ◽  
K. R. Bondioli

Cattle under the effect of heat stress have reduced fertility, with negative effects on the oocyte observed at the morphological, biochemical, transcriptional and developmental levels. There are no studies evaluating the effect of heat stress on the epigenetic profile of bovine oocytes, which plays a fundamental role in the regulation of gamete development. The objective of this study was to evaluate the effect of in vivo heat stress during the spring to summer transition on DNA methylation and DNA hydroxymethylation of bovine oocytes at the germinal vesicle (GV) and metaphase II (MII) stages. Ten Bos taurus crossbred nonlactating beef cows located at Saint Gabriel, Louisiana, USA (30°16′11.1″ N, 91°06′12.1″ W), were used for oocyte collection once monthly from April to August. Dominant follicle removal was performed 5-7 days before oocyte collection. Cumulus-oocyte complexes were collected through ovum pick-up from follicles &gt;2mm. Germinal vesicle (GV)-stage oocytes (50% of total obtained per cow) were subjected to a standard bovine in vitro maturation protocol to obtain metaphase II (MII) stage oocytes. The DNA methylation and DNA hydroxymethylation of GV and MII oocytes was assessed by fluorescence immunohistochemistry utilising primary antibodies against 5′-methylcytosine and 5′-hydromethylcytosine. Secondary antibodies utilised were Alexa Fluor 488 goat anti-mouse IgG and Alexa Fluor 546 donkey anti-rabbit IgG. Oocytes were visualised utilising a fluorescence deconvolution microscope and immunofluorescence data were expressed as corrected relative fluorescence per nucleus. The polar body was not included for fluorescence quantification when evaluating MII stage oocytes. Results (least squares means±standard error) were evaluated as cold months (April and May) and hot months (June, July, and August). Results were analysed by the type III test of fixed effects and Tukey media separation utilising Proc Glimmix of SAS 9.4 (P&lt;0.05; SAS Institute Inc., Cary, NC, USA). Maturation rates and percent of grade 1, grade 2, and grade 3 oocytes were square root arcsine transformed for statistical analysis. The number of total oocytes obtained per cow was higher in cold compared to hot months (21.88±2.34 and 14.23±2.17, respectively). Percent of grade-1 oocytes was higher in cold compared to hot months (38.25±3.69 and 27.59±3.09, respectively). There was no difference in percent of grade-2 oocytes between cold and hot months (21.80±2.44 and 22.60±2.20, respectively). There was a lower percent of grade-3 oocytes in cold compared to hot months (39.82±4.54 and 55.87±3.98, respectively). Maturation rate (in vitro maturation) was not different between cold and hot months (81.92±4.04 and 91.11±3.36, respectively). There was no difference between cold and hot months in DNA methylation (417,218.90±71,793.86 and 313,819.88±55,528.01, respectively) and DNA hydroxymethylation (444,931.10±67,920.78 and 352,254.68±56,425.96, respectively) of GV-stage oocytes. There was no difference between cold and hot months in DNA methylation (87,122.36±14,449.47 and 89,807.26±11,303.72 AU, respectively) and DNA hydroxymethylation (102,933.83±15,517.70 and 137,622.45±11,826.86 AU, respectively) of MII-stage oocytes.


2015 ◽  
Vol 61 (5) ◽  
pp. 459-464 ◽  
Author(s):  
Leah M. HOOPER ◽  
Rebecca R. PAYTON ◽  
Louisa A. RISPOLI ◽  
Arnold M. SAXTON ◽  
J. Lannett EDWARDS

2021 ◽  
Vol 12 ◽  
Author(s):  
Fabian A Diaz ◽  
Emilio J Gutierrez-Castillo ◽  
Brittany A Foster ◽  
Paige T Hardin ◽  
Kenneth R Bondioli ◽  
...  

Heat stress affects oocyte developmental competence and is a major cause of reduced fertility in heat stressed cattle. Negative effects of heat stress on the oocyte have been observed at morphological, biochemical and developmental levels. However, the mechanisms by which heat stress affects the oocyte at the transcriptional and epigenetic levels remain to be further elucidated. Here we aimed to investigate the effect of heat stress on oocyte quality, transcriptomic profiles and DNA methylation of oocytes collected through the transition from spring to summer under Louisiana conditions. Summer season resulted in a lower number of high quality oocytes obtained compared to the spring season. There was no difference in in vitro maturation rates of oocytes collected during spring as compared to summer. RNA sequencing analysis showed that a total of 211 and 92 genes were differentially expressed as a result of heat stress in GV and MII oocytes, respectively. Five common genes (E2F8, GATAD2B, BHLHE41, FBXO44, and RAB39B) were significantly affected by heat in both GV and MII oocytes. A number of pathways were also influenced by heat stress including glucocorticoid biosynthesis, apoptosis signaling, and HIPPO signaling in GV oocytes, and Oct4 pluripotency, Wnt/beta-catenin signaling, and melatonin degradation I in MII oocytes. In addition, fluorescent immunocytochemistry analysis showed no difference in global levels of DNA methylation and DNA hydroxymethylation at either the GV or MII stage between spring and summer oocytes. The results of this study contribute to a better understanding of the effect of heat stress on the molecular mechanisms altered in bovine oocytes.


2007 ◽  
Vol 30 (4) ◽  
pp. 97 ◽  
Author(s):  
A Wolf ◽  
J Mukherjee ◽  
A Guha

Introduction: GBMs are resistant to apoptosis induced by the hypoxic microenvironment and standard therapies including radiation and chemotherapy. We postulate that the Warburg effect, a preferential glycolytic phenotype of tumor cells even under aerobic conditions, plays a role in these aberrant pro-survival signals. In this study we quantitatively examined the expression profile of hypoxia-related glycolytic genes within pathologically- and MRI-defined “centre” and “periphery” of GBMs. We hypothesize that expression of hypoxia-induced glycolytic genes, particularly hexokinase 2 (HK2), favours cell survival and modulates resistance to tumour cell apoptosis by inhibiting the intrinsic mitochondrial apoptotic pathway. Methods: GBM patients underwent conventional T1-weighted contrast-enhanced MRI and MR spectroscopy studies on a 3.0T GE scanner, prior to stereotactic sampling (formalin and frozen) from regions which were T1-Gad enhancing (“centre”) and T2-positive, T1-Gad negative (“periphery”). Real-time qRT-PCR was performed to quantify regional gene expression of glycolytic genes including HK2. In vitro functional studies were performed in U87 and U373 GBM cell lines grown in normoxic (21% pO2) and hypoxic (< 1%pO2) conditions, transfected with HK2 siRNA followed by measurement of cell proliferation (BrdU), apoptosis (activated caspase 3/7, TUNEL, cytochrome c release) and viability (MTS assay). Results: There exists a differential expression profile of glycolytic enzymes between the hypoxic center and relatively normoxic periphery of GBMs. Under hypoxic conditions, there is increased expression of HK2 at the mitochondrial membrane in GBM cells. In vitro HK2 knockdown led to decreased cell survival and increased apoptosis via the intrinsic mitochondrial pathway, as seen by increased mitochondrial release of cytochrome-C. Conclusions: Increased expression of HK2 in the centre of GBMs promotes cell survival and confers resistance to apoptosis, as confirmed by in vitro studies. In vivo intracranial xenograft studies with injection of HK2-shRNA are currently being performed. HK2 and possibly other glycolytic enzymes may provide a target for enhanced therapeutic responsiveness thereby improving prognosis of patients with GBMs.


Sign in / Sign up

Export Citation Format

Share Document