scholarly journals Formulation and Evaluation of Rapimelt Tablet of Anti-Vertigo Drug (Lorazepam)

2020 ◽  
Vol 13 (4) ◽  
pp. 341-349
Author(s):  
B. M. Kadu ◽  
S. Bhasme ◽  
R. D. Bawankar ◽  
D. R. Mundhada

A. Rapimelt tablet of Lorazepam was prepared by direct compression method using Indion 414, Cross Carmellose Sodium and sodium starch glycolate as superdisintegrants with aim to get rapid onset of action, improve bioavailability and to give pleasant taste and better mouth feel. The tablets prepared were evaluated for various parameters like various density parameters, thickness, hardness, friability, disintegration time, wetting time and invitro dissolution time and were found to be within limits as per Indian Pharmacopoeia. FT-IR spectra of physical mixture of Lorazepam with Indion 414showedretention of basic peaks of Lorazepam. The developed formulation of Lorazepam batch F5 (10% Indion 414) showed good palatability and dispersed within 30 seconds as compared to Crosscarmellose Sodium batches F1-F3 and Sodium starch glycolate batches F6-F9.

Author(s):  
A. HARI OM PRAKASH RAO ◽  
R. SANTOSH KUMAR ◽  
SHAMBHAVI KANDUKURI ◽  
M. RAMYA

Objective: To synthesize, characterize and evaluate starch glycolate as a superdisintegrant in the formulation of Glipizide fast dissolving tablets by employing 23 factorial designs. Methods: Starch glycolate was prepared and its physical and micromeritic properties were performed to evaluate it. The fast dissolving tablet of Glipizide was prepared by employing starch crotonate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design for the evaluation of tablet parameters like disintegration and dissolution efficiency in 5 min. Results: The starch glycolate prepared was found to be fine, free-flowing and amorphous. Starch glycolate exhibited good swelling in water with a swelling index (10%). The study of starch glycolate was shown by fourier transform infrared spectra (FTIR). The drug content (100±5%), hardness (3.5–4 kg/sq. cm), and friability (<0.15%) was been effective with regard to all the formulated fast dissolving tablets employing starch glycolate. The disintegration time of all the formulated tablets was found to be in the range of 13±0.015 to 180±0.014 sec. The optimized formulation F8 had the least disintegration time i.e., 13±0.015 sec. The wetting time of the tablets was found to be in the range of 8±0.015 to 95±0.013 sec. The In vitro wetting time was less (i.e., 8±0.015s) in optimized formulation F8. The water absorption ratio of the formulated tablets was found to be in the range of 75±0.012 to 150±0.014%. The percent drug dissolved in the optimized formulation F8 was found to be 99.95% in 5 min. Conclusion: Starch glycolate was an efficient superdisintegrant for fast-dissolving tablets. The disintegration and dissolution efficiency of the fast dissolving tablets of glipizide was good and depended on the concentration of superdisintegrant employed i.e., starch glycolate, sodium starch glycolate, crospovidone. The formulated fast dissolving tablets of glipizide exhibited good dissolution efficiency in 5 min which can be used for the fast therapeutic action of glipizide.


1970 ◽  
Vol 7 (5) ◽  
pp. 19-24
Author(s):  
HARITHA PASUPULATI ◽  
Y PHALGUNA ◽  
SANDHYA RUDRA

The main objective of this work is to formulate and evaluate Cetirizine HCl MFDT’s using different concentrations of superdisintegrants like croscarmellose sodium (CCS), sodium starch glycolate (SSG) and their combinations in different ratios. The in vitro disintegration time of Cetrizine Hcl prepared by direct compression method by super disintegrates were found to be in the range of 18 to 11sec fulfilling the official requirements. The bulk density and tapped bulk density for the entire formulation blend varied from 0.508 gm/cc to 0.5438 gm/cc and 0.5941 to 0.6408 respectively. The friability was found in all designed formulations in the range 0.42 to 0.74% to be well within the approved range (<1%). The weight variation was found in all designed formulation in the range 97 to 102 mg. The wetting time were found to be in the range of 11 to 18sec. Water absorption ratio for all the formulations found in the range 11 to 16%.combination of sodium starch glycolate and cross carmellose sodium (6% of 25%-ssg&75%ccs)) promotes dissolution rate of drug release when compared to formulation of SSG & CCS alone. It may be due to capillary and wicking mechanism of SSG & CCS.   Keywords:   


Author(s):  
Pratiksha S. Deore ◽  
Yashpal M. More ◽  
Avish D. Maru

The aim of present work is to formulate and develop tablets of promethazine HCL.by using various superdisintegrating agent by direct compression method. The main objective of the study is to increase rapid onset of action of promethazine HCL in the treatment of nausea and vomiting. The orodispersible tablet of promethazine hcl is were prepared by direct compression method. Using different concentration of Crospovidone, croscarmellose sodium Mannitol, lactose, maltose, mg. stearate. The tablet was evaluated by various parameters and result are found to be satisfactory.


2016 ◽  
Vol 27 (1) ◽  
pp. 58-61
Author(s):  
Valeriu Iancu ◽  
Florentina Roncea ◽  
Radu George Cazacincu ◽  
Dumitru Lupuleasa

Abstract Orally disintegrating tablets (ODTs) are dosage forms which disintegrate in mouth within seconds without need of water. This type of quality in dosage form can be attained by addition of different varieties of excipients. Pharmaburst™ 500 is a co-processed excipient system which allows rapid disintegration and low adhesion to punches. The aim of the present study was to develop and evaluate 25 mg diclofenac sodium ODTs (orodispersible tablets) batches by direct compression method at different compression forces 10 kN (F1) and 20 kN (F2) and directly compressible excipients used in different ratio (Avicel PH 102, magnesium stearate and coprocessed excipient Pharmaburst™ 500, 70% and 80% w/w). The obtained batches were analyzed for appearance, tablet thickness, uniformity of weight, hardness, friability, disintegration time, and non-compendial methods (wetting time). Co-processed Pharmaburst™ 500 excipient 70% used for sodium diclofenac ODT obtaining determined good results for quality control tests evaluation.


Author(s):  
R. SANTOSH KUMAR ◽  
SHAMBHAVI KANDUKURI ◽  
M. RAMYA ◽  
B. KUSUMA LATHA

Objective: To synthesize, characterize and evaluate starch valerate as a superdisintegrant in the formulation of aceclofenac fast dissolving tablets by employing 23 factorial design. Methods: Starch valerate was synthesized and its physical and micromeritic properties were performed to evaluate it. The fast dissolving tablet of aceclofenac was prepared by employing starch valerate as a superdisintegrant in different proportions in each case by direct compression method using 23 factorial design for evaluation of tablet parameters like disintegration and dissolution efficiency in 5 min. Results: The starch valerate prepared was found to be fine, amorphous and free flowing. Starch valerate exhibited good swelling in water with swelling index (125.2%). The study of starch valerate was shown by fourier transform infrared spectra (FTIR). The drug content (200±5%), hardness (3.5–4 kg/sq. cm), and friability (<0.15%) has been effective with regard to all the formulated fast dissolving tablets employing starch valerate. The disintegration time of all the formulated tablets was found to be in the range of 14±0.04 to 25.7±0.02 sec. The optimized formulation F4 had the least disintegration time i.e., 12.8±0.02 sec. The wetting time of the tablets was found to be in the range of 76±0.21 to 217±0.17s. The In vitro wetting time was less (i.e., 28±0.02s) in optimized formulation F4. The water absorption ratio of the formulated tablets was found to be in the range of 46±0.12 to 100±0.27%. The percent drug dissolved in the optimized formulation F8 was found to be 99.93% in 5 min. Conclusion: Starch valerate, when combined with sodium starch glycolate, croscarmellose sodium, with aceclofenac, was found to be an effective super disintegrant which improved the dissolution efficiency and could therefore be used in the formulation of quick dissolving tablets to provide immediate release of the contained drug within 5 min.


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


Author(s):  
Adel M Aly ◽  
A A Mohammed

Sildenafil citrate is an oral therapy for erectile dysfunction (ED).  Sildenafil, a selective inhibitor of cyclic guanosine monophosphate-specific phosphodiesterase type 5 (PDE5), has been reported to be effective in men with ED associated with diabetes and prostate cancer, and in psychogenic ED.  The main objective of this study is to prepare more effective, rapidly disintegrating and rapid onset of action sildenafil oral tablets. Sildenafil tablets were prepared using the newly introduced Pharmaburst® as a direct compression vehicle in comparison with the well-known excipients, namely mannitol, anhydrous lactose and primojel. The formula containing Pharmaburst® showed the most rapidly-disintegrating effect (15 sec) compared to the other formulations. Thus, Pharmaburst® can be utilized as an effective direct compression vehicle as well as a superdisintegrant with very rapid disintegration time in vitro and in the oral cavity. The rapidly-disintegrating sildenafil tablets showed maximum serum concentration within only two minutes (Cmax of 0.76 µg) by applying the tablets to the oral cavity of rabbits, whereas, the conventional sildenafil tablets have a comparatively lower Cmax (0.56µg) through about 45 minutes.   


2018 ◽  
Vol 4 (1) ◽  
pp. 86-102 ◽  
Author(s):  
A. Acharya ◽  
G.B.K. Kumar ◽  
P. Goudanavar ◽  
K. Dhakal

Background: Recent developments in fast dissolving tablets have brought convenience in dosing to pediatric and elderly patients who have trouble in swallowing tablets.The main objective of the present study is to formulate fast dissolving tablet of Lornoxicam by direct compression method.Methods: Guar gum and crospovidone were used as natural and synthetic superdisintegrants respectively. Fast dissolving tablet of Lornoxicam were prepared by direct compression technique using three different approaches; superdisintegrant addition, sublimation, and solid dispersion.Results: IR and DSC studies showed no interaction between the drug and the excipients. All formulation showed disintegration time ranging from 16.09-42.54 second. Wetting time and disintegration time decreased by increasing the super disintegrant concentration from 2.5% to 5% w/w. Formulae L16 gave the best in- vitro disintegration and dissolution results, which would be due to swelling effect of Gaur gum and amorphization of the drug during the solid dispersion preparation.The best formulation L16 was subjected to stability testing for 3 month and results showed no significant change in appearance, hardness, drug content and dissolution profile of the tablets, hence tablet is stable throughout its stability studies.Conclusion: It was concluded that fast dissolving tablets of Lornoxicam were formulated successfully with desired characteristics which disintegrated rapidly; provided rapid onset of action; and enhanced the patient convenience and compliance.JMMIHS,2018;4(1):86-102


2015 ◽  
Vol 14 (1) ◽  
pp. 11-16
Author(s):  
T Mamatha ◽  
Md Zubair ◽  
N Sarah Nasreen ◽  
Md Ahmeduddin

The purpose of present research was to formulate and evaluate oro dispersible tablets (ODTs) of fosinopril sodium (FS). It has been developed at 20 mg dose and was prepared using different types of superdisintegrants such as (sodium starch glycolate, Ac-Di-Sol, crospovidone (CP), different types of subliming agents such as ammonium bicarbonate (AB) and camphor at different concentrations by direct compression method. The formulations were evaluated for uniformity of weight, content, hardness, friability, wetting time, in vitro dispersion time and dissolution rate. All formulations showed satisfactory mechanical strength, uniform weight, uniform drug content, and lesser wetting time and dispersion time. All the formulations showed more than 90% of drug release within 15 minutes. Among 10 formulations, formulation A5 (consisting of 2 % CP) and F4 (consisting of 15 % AB) were found to yield best results in terms of wetting time, in vitro dispersion time and dissolution rate.Dhaka Univ. J. Pharm. Sci. 14(1): 11-16, 2015 (June)


Author(s):  
Saibabu Ch ◽  
Triveni P

Formulation research is oriented towards safety, efficacy and quick onset of action of existing drug molecule through novel concepts of drug delivery. Orally disintegrating tablets of Rizatriptan benzoate were prepared by direct compression method to provide faster relief from pain to migraine sufferers. About eleven formulations for the present study were carried out. Croscarmellose sodium, Crospovidone and Sodium starch glycolate (SSG) were used as superdisintegrants, while microcrystalline cellulose was used as diluent. The prepared batches of tablets were evaluated for weight variation, hardness, friability, wetting time, invitro dispersion time, drug content and invitro dissolution studies. The formulation containing combination of Croscarmellose sodium and Sodium starch glycolate showed rapid invitro dispersion time as compared to other formulations. The optimized formulation dispersed in 8 seconds. It also showed a higher water absorption ratio and 99.58% of drug is released within 2 minutes.


Sign in / Sign up

Export Citation Format

Share Document