Preparation and Evaluation of Sildenafil Rapidly Disintegrating Tablets

Author(s):  
Adel M Aly ◽  
A A Mohammed

Sildenafil citrate is an oral therapy for erectile dysfunction (ED).  Sildenafil, a selective inhibitor of cyclic guanosine monophosphate-specific phosphodiesterase type 5 (PDE5), has been reported to be effective in men with ED associated with diabetes and prostate cancer, and in psychogenic ED.  The main objective of this study is to prepare more effective, rapidly disintegrating and rapid onset of action sildenafil oral tablets. Sildenafil tablets were prepared using the newly introduced Pharmaburst® as a direct compression vehicle in comparison with the well-known excipients, namely mannitol, anhydrous lactose and primojel. The formula containing Pharmaburst® showed the most rapidly-disintegrating effect (15 sec) compared to the other formulations. Thus, Pharmaburst® can be utilized as an effective direct compression vehicle as well as a superdisintegrant with very rapid disintegration time in vitro and in the oral cavity. The rapidly-disintegrating sildenafil tablets showed maximum serum concentration within only two minutes (Cmax of 0.76 µg) by applying the tablets to the oral cavity of rabbits, whereas, the conventional sildenafil tablets have a comparatively lower Cmax (0.56µg) through about 45 minutes.   

2018 ◽  
Vol 4 (1) ◽  
pp. 86-102 ◽  
Author(s):  
A. Acharya ◽  
G.B.K. Kumar ◽  
P. Goudanavar ◽  
K. Dhakal

Background: Recent developments in fast dissolving tablets have brought convenience in dosing to pediatric and elderly patients who have trouble in swallowing tablets.The main objective of the present study is to formulate fast dissolving tablet of Lornoxicam by direct compression method.Methods: Guar gum and crospovidone were used as natural and synthetic superdisintegrants respectively. Fast dissolving tablet of Lornoxicam were prepared by direct compression technique using three different approaches; superdisintegrant addition, sublimation, and solid dispersion.Results: IR and DSC studies showed no interaction between the drug and the excipients. All formulation showed disintegration time ranging from 16.09-42.54 second. Wetting time and disintegration time decreased by increasing the super disintegrant concentration from 2.5% to 5% w/w. Formulae L16 gave the best in- vitro disintegration and dissolution results, which would be due to swelling effect of Gaur gum and amorphization of the drug during the solid dispersion preparation.The best formulation L16 was subjected to stability testing for 3 month and results showed no significant change in appearance, hardness, drug content and dissolution profile of the tablets, hence tablet is stable throughout its stability studies.Conclusion: It was concluded that fast dissolving tablets of Lornoxicam were formulated successfully with desired characteristics which disintegrated rapidly; provided rapid onset of action; and enhanced the patient convenience and compliance.JMMIHS,2018;4(1):86-102


2019 ◽  
Vol 9 (4-s) ◽  
pp. 462-468
Author(s):  
Mohd. Razi Ansari ◽  
Sumer Singh ◽  
M.A. Quazi ◽  
Yaasir Ahmed Ansari ◽  
Jameel Abbas

Among the different type of route of administration oral route for drug administration is most common route in which Orodispersible tablet is preferred for the patient which are unconscious, week or for immediate control. The tablet gets dispersed in mouth cavity without water, present study deals with formulation of Naproxen sodium mouth dissolving tablets using super disintegrants. Naproxen sodium is analgesic and NSAID, used for the treatment of pain and inflammation caused by different condition such as osteoarthritis, rheumatoid arthritis and menstrual cramps. However gastric discomfort caused by naproxen sodium result in poor patient compliance associated with it conventional doses form but now days Naproxen sodium MDTs produces rapid onset of action and minimise gastric discomfort associated with it. Thus improves patient compliance, enhance bioavailability and reduces the dose of drug. MDTs are formulated by direct compression method using super disintegrants in different proportion. The powder blend is subjected to pre-compression evaluation parameters like bulk density, true density, and tapped density and angle of repose. Formulations are evaluated for weight variation, hardness, wetting time, water absorption time, disintegration time. And in vitro dissolution studies and all formulations complies Pharmacopoeias standards. The tablets are evaluated and result compared for all five formulation the most efficacious super disintegrants for MTDs of Naproxen sodium as suggested by the dispersion time, disintegration time and drug dissolution profiles. Keywords: - MDT, Naproxen Sodium, crosscarmellose Sodium, Sodium starch glycolate, Cross-povidone.


Author(s):  
Avani R. Gosai ◽  
Sanjay B. Patil ◽  
Krutika K. Sawant

The objective of the present investigation was to prepare oro dispersible tablets of ondansetron hydrochloride, because of its application in emesis condition, fast onset of action and avoidance of water is highly desirable. Tablets were prepared by direct compression using sodium starch glycolate and croscarmellose as superdisintegrants, as the combination of these two agents gives better disintegration of the tablet. Microcrystalline cellulose was used as diluent and mannitol, mint flavor, sodium saccharine to enhance the organoleptic properties of tablets. The tablets were evaluated for weight variation, mechanical strength, in vitro disintegration time, in vivo disintegration time, wetting time, and drug release characteristics. Hardness and friability data indicated good mechanical strength of tablets.  The results of in vitro disintegration time and in vivo disintegration time indicated that the tablets dispersed rapidly in mouth within 3 to 5 seconds. Dissolution study revealed faster release rate of ondansetron hydrochloride from the tablets as compared to pure drug and marketed conventional tablet formulation of ondansetron hydrochloride. It was concluded that superdisintegrants addition technique is a useful method for preparing oro dispersible tablets by direct compression method


2020 ◽  
Vol 13 (4) ◽  
pp. 341-349
Author(s):  
B. M. Kadu ◽  
S. Bhasme ◽  
R. D. Bawankar ◽  
D. R. Mundhada

A. Rapimelt tablet of Lorazepam was prepared by direct compression method using Indion 414, Cross Carmellose Sodium and sodium starch glycolate as superdisintegrants with aim to get rapid onset of action, improve bioavailability and to give pleasant taste and better mouth feel. The tablets prepared were evaluated for various parameters like various density parameters, thickness, hardness, friability, disintegration time, wetting time and invitro dissolution time and were found to be within limits as per Indian Pharmacopoeia. FT-IR spectra of physical mixture of Lorazepam with Indion 414showedretention of basic peaks of Lorazepam. The developed formulation of Lorazepam batch F5 (10% Indion 414) showed good palatability and dispersed within 30 seconds as compared to Crosscarmellose Sodium batches F1-F3 and Sodium starch glycolate batches F6-F9.


Endocrinology ◽  
2012 ◽  
Vol 153 (11) ◽  
pp. 5546-5555 ◽  
Author(s):  
Christoph Zenzmaier ◽  
Johann Kern ◽  
Natalie Sampson ◽  
Martin Heitz ◽  
Eugen Plas ◽  
...  

Abstract Phosphodiesterase type 5 (PDE5) inhibitors have been demonstrated to improve lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). Because BPH is primarily driven by fibroblast-to-myofibroblast trans-differentiation, this study aimed to evaluate the potential of the PDE5 inhibitor vardenafil to inhibit and reverse trans-differentation of primary human prostatic stromal cells (PrSC). Vardenafil, sodium nitroprusside, lentiviral-delivered short hairpin RNA-mediated PDE5 knockdown, sodium orthovanadate, and inhibitors of MAPK kinase, protein kinase G, Ras homolog family member (Rho) A, RhoA/Rho kinase, phosphatidylinositol 3 kinase and protein kinase B (AKT) were applied to PrSC treated with basic fibroblast growth factor (fibroblasts) or TGFβ1 (myofibroblasts) in vitro, in chicken chorioallantoic membrane xenografts in vivo, and to prostatic organoids ex vivo. Fibroblast-to-myofibroblast trans-differentiation was monitored by smooth muscle cell actin and IGF binding protein 3 mRNA and protein levels. Vardenafil significantly attenuated TGFβ1-induced PrSC trans-differentiation in vitro and in chorioallantoic membrane xenografts. Enhancement of nitric oxide/cyclic guanosine monophosphate signaling by vardenafil, sodium nitroprusside, or PDE5 knockdown reduced smooth muscle cell actin and IGF binding protein 3 mRNA and protein levels and restored fibroblast-like morphology in trans-differentiated myofibroblast. This reversal of trans-differentiation was not affected by MAPK kinase, protein kinase G, RhoA, or RhoA/Rho kinase inhibition, but vardenafil attenuated phospho-AKT levels in myofibroblasts. Consistently, phosphatidylinositol 3 kinase or AKT inhibition induced reversal of trans-differentiation, whereas the tyrosine phosphatase inhibitor sodium orthovanadate abrogated the effect of vardenafil. Treatment of prostatic organoids with vardenafil ex vivo reduced expression of myofibroblast markers, indicating reverse remodeling of stroma towards a desired higher fibroblast/myofibroblast ratio. Thus, enhancement of the nitric oxide/cyclic guanosine monophosphate signaling pathway by vardenafil attenuates and reverts fibroblast-to-myofibroblast trans-differentiation, hypothesizing that BPH patients might benefit from long-term therapy with PDE5 inhibitors.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Srinivas A

The main objective of this study was to develop fast dissolving oral films of ropinirole HCl to attain quick onset of action for the better management of Parkinson’s disease. Twenty-seven formulations (F1-F27) of ropinirole oral dissolving films by solvent-casting method using 33 response surface method by using HPMC E15, Maltodextrin PEG 4000 by using Design of experiment software. Formulations were evaluated for their physical characteristics, thickness, folding endurance, tensile strength, disintegration time, drug content uniformity and drug release characteristics and found to be within the limits. Among the prepared formulations F4 showed minimum disintegration time 11 sec, maximum drug was released i.e. 99.68 ± 1.52% of drug within 10 min when compared to the other formulations and finalized as optimized formulation. FTIR data revealed that no interactions takes place between the drug and polymers used in the optimized formulation. The in vitro dissolution profiles of marketed product and optimized formulation was compared and found to be the drug released was 92.77 ± 1.52 after 50 min. Therefore, it can be a good alternative to conventional ropinirole for immediate action. In vitro evaluation of the ropinirole fast dissolving films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of ropinirole. The oral dissolving film is considered to be potentially useful for the treatment of Parkinson’s disease where quick onset of action is desired


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
SHUBHAM BIYANI ◽  
SARANG MALGIRWAR ◽  
RAJESHWAR KSHIRSAGAR ◽  
SAGAR KOTHAWADE

Objective: The intension of the present study includes fabrication and optimization of mouth dissolving film loaded with Chlorothalidone by solvent evaporation techniques using two components and their three levels as multilevel Categoric design. Methods: Major problem associated with the development of film loaded with BCS class II drug is to increase its solubility. Here the Chlorothalidone solubility achieved by co-solvents, such as methanol. After dissolving the drug in co-solvent, this drug solution is poured into an aqueous dispersion of Hydroxypropyl Methylcellulose E5 (HPMC E5) and Polyethylene glycol 400 (PEG 400). The two independent variables selected are factor A (concentration of HPMC E5) and factor B (concentration of PEG 400) was selected on the basis of preliminary trials. The percentage drug release (R1), Disintegration time in sec (R2) and folding endurance (R3) were selected as dependent variables. Here HPMC E5 used as a film former, PEG 400 as plasticizer, mannitol as bulking agent, Sodium starch glycolate as a disintegrating agent, tween 80 as the surfactant, tartaric acid as saliva stimulating agent, sodium saccharin as a sweetener and orange flavour etc. These fabricated films were evaluated for physicochemical properties, disintegration time and In vitro drug release study. Results: The formulation F6 has more favorable responses as per multilevel categoric design is % drug release about 98.95 %, average disintegration time about 24.33 second and folding endurance is 117. Thus formulation F6 was preferred as an optimized formulation. Conclusion: The present formulation delivers medicament accurately with good therapeutic efficiency by oral administration, this mouth dissolving films having a rapid onset of action than conventional tablet formulations.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3418
Author(s):  
Grzegorz Grześk ◽  
Alicja Nowaczyk

For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.


1991 ◽  
Vol 37 (2) ◽  
pp. 186-190 ◽  
Author(s):  
Karl-P Vorderwinkler ◽  
Eilka Artner-Dworzak ◽  
Gab Jakob ◽  
Johanne Mair ◽  
Franz Diensti ◽  
...  

Abstract Concentrations of atrial natriuretic peptide (ANP) are increased in plasma of patients with impaired cardiac and renal function. The second messenger of ANP, cyclic guanosine monophosphate (cGMP), is released into the plasma specifically upon stimulation of cells with ANP. Although nitrates can also activate intracellular cGMP synthesis, we detected no increase in plasma cGMP concentrations after infusions of glycerol trinitrate. Because immunoreactive ANP is highly susceptible to degradation and nonspecific influences in blood samples, determinations of ANP require immediate centrifugation and storage of plasma at -20 degrees C. In contrast, we found that cGMP is stable for five days in vitro in blood samples containing EDTA. In 147 healthy blood donors, the upper cutoff value for plasma cGMP was 6.60 nmol/L, not significantly different (P greater than 0.05) from that for 222 patients with disorders other than cardiovascular and renal. In 69 patients with manifest congestive heart failure (NYHA stages II-IV), 65 had increased cGMP values. Using the above cutoff value for cGMP gave diagnostic sensitivity of 94.2% and specificity of 93.7%. Plasma cGMP may thus provide an alternative for routine clinical measurements of ANP in cardiac diseases in the absence of renal disorders.


Sign in / Sign up

Export Citation Format

Share Document