NUMERICAL ANALYSIS OF A CONSTANT FLOW IN A DIRECT ABSORPTION SOLAR COLLECTOR FOR WATER HEATING SYSTEMS USING SIMPLE AND PIMPLE ALGORITHMS

Author(s):  
Guilherme Biazzi Gonçalves ◽  
Vicente Luiz Scalon ◽  
Alcides Padilha
2015 ◽  
Vol 357 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Hemant Kumar Gupta ◽  
Ghanshyam Das Agrawal ◽  
Jyotirmay Mathur

Author(s):  
P.G. Struchalin ◽  
V.S. Yunin ◽  
K.V. Kutsenko ◽  
O.V. Nikolaev ◽  
A.A. Vologzhannikova ◽  
...  

2007 ◽  
Vol 6 (2) ◽  
pp. 19
Author(s):  
J. M. S. Lafay ◽  
A. Krenzinger

This work presents the methodology and results of the validation of a computer program for the simulation of water heating systems combining solar energy and gas. Two experimental systems, named series and parallel, were assembled. These systems have the same components, differing on how they are connected. All the components were individually characterized and their parameters determined. Simulations of the behavior of the thermal tank, gas heater and solar collector were performed and confronted to experimental data. The results show that the simulation program “AQUESOLGAS” can accurately describe the behavior of water heating systems with solar energy and gas.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 285 ◽  
Author(s):  
M. Karim ◽  
Owen Arthur ◽  
Prasad Yarlagadda ◽  
Majedul Islam ◽  
Md Mahiuddin

Nanofluids have great potential in a wide range of fields including solar thermal applications, where molten salt nanofluids have shown great potential as a heat transfer fluid (HTF) for use in high temperature solar applications. However, no study has investigated the use of molten salt nanofluids as the HTF in direct absorption solar collector systems (DAC). In this study, a two dimensional CFD model of a direct absorption high temperature molten salt nanofluid concentrating solar receiver has been developed to investigate the effects design and operating variables on receiver performance. It has been found that the Carnot efficiency increases with increasing receiver length, solar concentration, increasing height and decreasing inlet velocity. When coupled to a power generation cycle, it is predicted that total system efficiency can exceed 40% when solar concentrations are greater than 100×. To impart more emphasis on the temperature rise of the receiver, an adjusted Carnot efficiency has been used in conjunction with the upper temperature limit of the nanofluid. The adjusted total efficiency also resulted in a peak efficiency for solar concentration, which decreased with decreasing volume fraction, implying that each receiver configuration has an optimal solar concentration.


Sign in / Sign up

Export Citation Format

Share Document