A Novel Continuous Optimization Approach for the 0-1 Knapsack Problem

Author(s):  
Felipe Ferreira Lopes ◽  
Alireza Mohebi Ahstiani
Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Yanhong Feng ◽  
Haizhong An ◽  
Xiangyun Gao

Moth search (MS) algorithm, originally proposed to solve continuous optimization problems, is a novel bio-inspired metaheuristic algorithm. At present, there seems to be little concern about using MS to solve discrete optimization problems. One of the most common and efficient ways to discretize MS is to use a transfer function, which is in charge of mapping a continuous search space to a discrete search space. In this paper, twelve transfer functions divided into three families, S-shaped (named S1, S2, S3, and S4), V-shaped (named V1, V2, V3, and V4), and other shapes (named O1, O2, O3, and O4), are combined with MS, and then twelve discrete versions MS algorithms are proposed for solving set-union knapsack problem (SUKP). Three groups of fifteen SUKP instances are employed to evaluate the importance of these transfer functions. The results show that O4 is the best transfer function when combined with MS to solve SUKP. Meanwhile, the importance of the transfer function in terms of improving the quality of solutions and convergence rate is demonstrated as well.


2015 ◽  
Vol 157 (1) ◽  
pp. 277-296 ◽  
Author(s):  
Jinil Han ◽  
Kyungsik Lee ◽  
Chungmok Lee ◽  
Ki-Seok Choi ◽  
Sungsoo Park

2022 ◽  
Vol 41 (1) ◽  
pp. 1-16
Author(s):  
Jian Liu ◽  
Shiqing Xin ◽  
Xifeng Gao ◽  
Kaihang Gao ◽  
Kai Xu ◽  
...  

Wrapping objects using ropes is a common practice in our daily life. However, it is difficult to design and tie ropes on a 3D object with complex topology and geometry features while ensuring wrapping security and easy operation. In this article, we propose to compute a rope net that can tightly wrap around various 3D shapes. Our computed rope net not only immobilizes the object but also maintains the load balance during lifting. Based on the key observation that if every knot of the net has four adjacent curve edges, then only a single rope is needed to construct the entire net. We reformulate the rope net computation problem into a constrained curve network optimization. We propose a discrete-continuous optimization approach, where the topological constraints are satisfied in the discrete phase and the geometrical goals are achieved in the continuous stage. We also develop a hoist planning to pick anchor points so that the rope net equally distributes the load during hoisting. Furthermore, we simulate the wrapping process and use it to guide the physical rope net construction process. We demonstrate the effectiveness of our method on 3D objects with varying geometric and topological complexity. In addition, we conduct physical experiments to demonstrate the practicability of our method.


2022 ◽  
Vol 11 (1) ◽  
pp. 55-72 ◽  
Author(s):  
Anima Naik ◽  
Pradeep Kumar Chokkalingam

In this paper, we propose the binary version of the Social Group Optimization (BSGO) algorithm for solving the 0-1 knapsack problem. The standard Social Group Optimization (SGO) is used for continuous optimization problems. So a transformation function is used to convert the continuous values generated from SGO into binary ones. The experiments are carried out using both low-dimensional and high-dimensional knapsack problems. The results obtained by the BSGO algorithm are compared with other binary optimization algorithms. Experimental results reveal the superiority of the BSGO algorithm in achieving a high quality of solutions over different algorithms and prove that it is one of the best finding algorithms especially in high-dimensional cases.


2018 ◽  
Vol 35 (3) ◽  
pp. 3267-3283 ◽  
Author(s):  
Mohamad Nabi Omidvar ◽  
Samad Nejatian ◽  
Hamid Parvin ◽  
Vahideh Rezaie

2014 ◽  
Author(s):  
Dohyung Seo ◽  
Jeroen Van Baar

Deformable (2D or 3D) medical image registration is a challenging problem. Existing approaches assume that the underlying deformation is smooth. This smoothness assumption allows for solving the deformable registration at a coarse resolution and interpolate for finer resolutions. However, sliding of organs and breathing motion, exhibit discontinuities. We propose a discrete optimization approach to preserve these discontinuities. Solving continuous deformations using discrete optimization requires a fine distribution of the discrete labels. Coupled with the typical size of medical image datasets, this poses challenges to compute solutions efficiently. In this paper we present a practical, multi-scale formulation. We describe how discontinuities can be preserved, and how the optimization problem is solved. Results on synthetic 2D, and real 3D data show that we can well approximate the smoothness of continuous optimization, while accurately maintaining discontinuities.


Sign in / Sign up

Export Citation Format

Share Document