scholarly journals The Impacts of Different Green Manure on Soil Microbial Communities and Crop Health

Author(s):  
Hongwu Yang ◽  
Jiaojiao Niu ◽  
Jiemeng Tao ◽  
Yabing Gu ◽  
Chao Zhang ◽  
...  

Green manure could improve soil nutrients and crop production, playing a significant role in sustainable agriculture. However, the impacts of green manure on crop health and the roles soil microbial communities play in the process haven’t been clarified clearly yet. In this study, we investigated soil microbial community composition and structure in four tobacco farmlands, which were treated with different green manure (control, ryegrass, pea and rape), using 16S rRNA gene amplicons sequencing. Results showed that green manure had significant impacts on soil properties, microbial communities and tobacco health. First, soil total C, N and Ca content increased significantly in groups treated with green manure than control. Second, soil community diversity was significantly higher in groups treated with green manure. Third, green manure especially ryegrass, decreased tobacco disease (bacterial wilt) rate dramatically, and the process might be mediated by soil microbial communities. On the one hand, several microbial populations were found to be potentially disease inducible or suppressive. For example, the abundances of Dokdonella and Rhodanobacter were positively correlated to tobacco disease rate, while Acidobacteira_Gp4 and Gp6 had negative correlations with tobacco disease. On the other hand, soil microbial communities were shaped by soil properties (e.g., pH, C and N content). In conclusion, our research showed that green manure could increase soil nutrients directly, and further improve tobacco health mediated by soil microorganisms, which may shed light on revealing interactions among soil properties, microorganisms and plants.

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 587
Author(s):  
Ida Rascio ◽  
Maddalena Curci ◽  
Concetta Eliana Gattullo ◽  
Anna Lavecchia ◽  
Mohammad Yaghoubi Khanghahi ◽  
...  

Fire events in agricultural soils can modify not only soil properties but also the structure of soil microbial communities, especially in soils containing high concentrations of potentially toxic elements (PTEs). The recolonization of burned soils can in fact favor the proliferation of certain microorganisms, more adaptable to post-fire soil conditions and higher PTE availability, over others. In this study, we simulated with laboratory experiments the microbial recolonization of an agricultural soil containing high Cr concentrations after heating at 500 °C for 30 min, to mimic the burning of crop residues. Changes in soil properties and Cr speciation were assessed, as well as soil microbial structure by means of 16S rRNA gene sequencing. Both altered soil conditions and increased Cr availability, especially Cr(VI), appeared to be responsible for the reduction in species diversity in heated soils and the proliferation of Firmicutes. Indeed, already after 3 days from the heat treatment, Firmicutes increased from 14% to 60% relative abundance. In particular, Paenibacillus was the most abundant genus identified after the simulation, with an average relative abundance of 40%. These bacteria are known to be good fire-responders and Cr-tolerant. These results could be useful to identify bacterial strains to be used as bioindicators of altered environments and for the recovery of fire-impacted polluted sites.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Yongjian Chen ◽  
Jialiang Kuang ◽  
Pandeng Wang ◽  
Wensheng Shu ◽  
Albert Barberán

We are living in a new epoch—the Anthropocene, in which human activity is reshaping global biodiversity at an unprecedented rate. Increasing efforts are being made toward a better understanding of the associations between human activity and the geographic patterns in plant and animal communities. However, similar efforts are rarely applied to microbial communities. Here, we collected 472 forest soil samples across eastern China, and the bacterial and fungal communities in those samples were determined by high-throughput sequencing of 16S rRNA gene and internal transcribed spacer region, respectively. By compiling human impact variables as well as climate and soil variables, our goal was to elucidate the association between microbial richness and human activity when climate and soil variables are taken into account. We found that soil microbial richness was associated with human activity. Specifically, human population density was positively associated with the richness of bacteria, nitrifying bacteria and fungal plant pathogens, but it was negatively associated with the richness of cellulolytic bacteria and ectomycorrhizal fungi. Together, these results suggest that the associations between geographic variations of soil microbial richness and human activity still persist when climate and soil variables are taken into account and that these associations vary among different microbial taxonomic and functional groups.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252216
Author(s):  
Laurie Dunn ◽  
Christophe Lang ◽  
Nicolas Marilleau ◽  
Sébastien Terrat ◽  
Luc Biju-Duval ◽  
...  

According to biogeography studies, the abundance and richness of soil microorganisms vary across multiple spatial scales according to soil properties and farming practices. However, soil microorganisms also exhibit poorly understood temporal variations. This study aimed at better understanding how soil microbial communities respond to changes in farming practices at a landscape scale over time. A regular grid of 269 sites was set up across a 1,200 ha farming landscape, and soil samples were characterized for their molecular microbial biomass and bacterial richness at two dates (2011 and 2016). A mapping approach highlighted that spatial microbial patterns were stable over time, while abundance and richness levels were modified. The drivers of these changes were investigated though a PLS-PM (partial least square path-modeling) approach. Soil properties were stable over time, but farming practices changed. Molecular microbial biomass was mainly driven by soil resources, whereas bacterial richness depended on both farming practices and ecological parameters. Previous-crop and management effects and a temporal dependence of the microbial community on the historical farming management were also highlighted.


2014 ◽  
Vol 80 (16) ◽  
pp. 4920-4929 ◽  
Author(s):  
Christian L. Lauber ◽  
Jessica L. Metcalf ◽  
Kyle Keepers ◽  
Gail Ackermann ◽  
David O. Carter ◽  
...  

ABSTRACTCarrion decomposition is an ecologically important natural phenomenon influenced by a complex set of factors, including temperature, moisture, and the activity of microorganisms, invertebrates, and scavengers. The role of soil microbes as decomposers in this process is essential but not well understood and represents a knowledge gap in carrion ecology. To better define the role and sources of microbes in carrion decomposition, lab-reared mice were decomposed on either (i) soil with an intact microbial community or (ii) soil that was sterilized. We characterized the microbial community (16S rRNA gene for bacteria and archaea, and the 18S rRNA gene for fungi and microbial eukaryotes) for three body sites along with the underlying soil (i.e., gravesoils) at time intervals coinciding with visible changes in carrion morphology. Our results indicate that mice placed on soil with intact microbial communities reach advanced stages of decomposition 2 to 3 times faster than those placed on sterile soil. Microbial communities associated with skin and gravesoils of carrion in stages of active and advanced decay were significantly different between soil types (sterile versus untreated), suggesting that substrates on which carrion decompose may partially determine the microbial decomposer community. However, the source of the decomposer community (soil- versus carcass-associated microbes) was not clear in our data set, suggesting that greater sequencing depth needs to be employed to identify the origin of the decomposer communities in carrion decomposition. Overall, our data show that soil microbial communities have a significant impact on the rate at which carrion decomposes and have important implications for understanding carrion ecology.


2007 ◽  
Vol 74 (1) ◽  
pp. 216-224 ◽  
Author(s):  
Nancy R. Smith ◽  
Barbara E. Kishchuk ◽  
William W. Mohn

ABSTRACT Wildfires and harvesting are important disturbances to forest ecosystems, but their effects on soil microbial communities are not well characterized and have not previously been compared directly. This study was conducted at sites with similar soil, climatic, and other properties in a spruce-dominated boreal forest near Chisholm, Alberta, Canada. Soil microbial communities were assessed following four treatments: control, harvest, burn, and burn plus timber salvage (burn-salvage). Burn treatments were at sites affected by a large wildfire in May 2001, and the communities were sampled 1 year after the fire. Microbial biomass carbon decreased 18%, 74%, and 53% in the harvest, burn, and burn-salvage treatments, respectively. Microbial biomass nitrogen decreased 25% in the harvest treatment, but increased in the burn treatments, probably because of microbial assimilation of the increased amounts of available NH4 + and NO3 − due to burning. Bacterial community composition was analyzed by nonparametric ordination of molecular fingerprint data of 119 samples from both ribosomal intergenic spacer analysis (RISA) and rRNA gene denaturing gradient gel electrophoresis. On the basis of multiresponse permutation procedures, community composition was significantly different among all treatments, with the greatest differences between the two burned treatments versus the two unburned treatments. The sequencing of DNA bands from RISA fingerprints revealed distinct distributions of bacterial divisions among the treatments. Gamma- and Alphaproteobacteria were highly characteristic of the unburned treatments, while Betaproteobacteria and members of Bacillus were highly characteristic of the burned treatments. Wildfire had distinct and more pronounced effects on the soil microbial community than did harvesting.


2021 ◽  
Vol 9 (2) ◽  
pp. 362 ◽  
Author(s):  
Wen-Jing Gong ◽  
Zi-Fan Niu ◽  
Xing-Run Wang ◽  
He-Ping Zhao

The effects of long-term heavy metal contamination on the soil biological processes and soil microbial communities were investigated in a typical electroplating site in Zhangjiakou, China. It was found that the soil of the electroplating plant at Zhangjiakou were heavily polluted by Cr, Cr (VI), Ni, Cu, and Zn, with concentrations ranged from 112.8 to 9727.2, 0 to 1083.3, 15.6 to 58.4, 10.8 to 510.0 and 69.6 to 631.6 mg/kg, respectively. Soil urease and phosphatase activities were significantly inhibited by the heavy metal contamination, while the microbial biomass carbon content and the bacterial community richness were much lower compared to noncontaminated samples, suggesting that the long-term heavy metal contamination had a severe negative effect on soil microorganisms. Differently, soil dehydrogenase was promoted in the presence of Chromate compared to noncontaminated samples. This might be due to the enrichment of Sphingomonadaceae, which have been proven to be able to secrete dehydrogenase. The high-throughput sequencing of the 16S rRNA gene documented that Proteobacteria, Actinobacteria, and Chloroflexi were the dominant bacterial phyla in the contaminated soil. The Spearman correlation analysis showed the Methylobacillus, Muribaculaceae, and Sphingomonadaceae were able to tolerate high concentrations of Cr, Cr (VI), Cu, and Zn, indicating their potential in soil remediation.


Geoderma ◽  
2012 ◽  
Vol 170 ◽  
pp. 369-377 ◽  
Author(s):  
David Hiltbrunner ◽  
Sebastian Schulze ◽  
Frank Hagedorn ◽  
Michael W.I. Schmidt ◽  
Stephan Zimmmermann

Sign in / Sign up

Export Citation Format

Share Document