scholarly journals Shock Pulse Index and Its Application in the Fault Diagnosis of Rolling Element Bearings

Author(s):  
Peng Sun ◽  
Yuhe Liao ◽  
Jing Lin

Properties of time domain parameters of the vibration signal have been extensively studied for the fault diagnosis of rolling element bearings (REB). Parameters like kurtosis and Envelope Harmonic-to-Noise Ratio are most widely applied in this field and some important progress has been made. However, since only one-sided information is contained in these parameters respectively, problems still exist in practice when the signals collected are of complicated structure and/or contaminated by strong background noises. A new parameter, named Shock pulse index (SPI), is proposed in this paper. It integrates the mutual advantage of both parameters above and can help effectively identify fault related impulse components under the interference of strong background noises, unrelated harmonic components and random impulses. The SPI optimizes the parameters of Maximum Correlated Kurtosis Deconvolution (MCKD), which is used to filter the signals under consideration. Finally, the interested transient information contained in the filtered signal can be highlighted through demodulation with Teager Energy Operator (TEO). Fault related impulse components can therefore be extracted accurately. Simulations and experiment analyses verify the effectiveness and correctness of the SPI.

2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Xingxing Jiang ◽  
Shunming Li ◽  
Chun Cheng

Vibration signals of the defect rolling element bearings are usually immersed in strong background noise, which make it difficult to detect the incipient bearing defect. In our paper, the adaptive detection of the multiresonance bands in vibration signal is firstly considered based on variational mode decomposition (VMD). As a consequence, the novel method for enhancing rolling element bearing fault diagnosis is proposed. Specifically, the method is conducted by the following three steps. First, the VMD is introduced to decompose the raw vibration signal. Second, the one or more modes with the information of fault-related impulses are selected through the kurtosis index. Third, Multiresolution Teager Energy Operator (MTEO) is employed to extract the fault-related impulses hidden in the vibration signal and avoid the negative value phenomenon of Teager Energy Operator (TEO). Meanwhile, the physical meaning of MTEO is also discovered in this paper. In addition, an idea of combining the multiresonance bands is constructed to further enhance the fault-related impulses. The simulation studies and experimental verifications confirm that the proposed method is effective for identifying the multiresonance bands and enhancing rolling element bearing fault diagnosis by comparing with Hilbert transform, EMD-based demodulation, and fast Kurtogram analysis.


2011 ◽  
Vol 305 ◽  
pp. 012129 ◽  
Author(s):  
Zhipeng Feng ◽  
Tianjin Wang ◽  
Ming J Zuo ◽  
Fulei Chu ◽  
Shaoze Yan

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Longlong Li ◽  
Yahui Cui ◽  
Runlin Chen ◽  
Lingping Chen ◽  
Lihua Wang

The extraction of impulsive signatures from a vibration signal is vital for fault diagnosis of rolling element bearings, which are always whelmed by noise, especially in the early stage of defect development. Aiming at the weak defect diagnosis, kurtosis of Teager energy operator (KTEO) spectrum is employed to indicate the fault information capacity of a spectrum, and considering the accumulative effect of a singular component, accumulative kurtosis of TEO (AKTEO) is firstly proposed to determine the proper signal reconstructed order during vibration signal processing using singular value decomposition (SVD). Then, a vibration processing scheme named SVD-AKTEO is designed where an iteration is employed to reflect an accumulative singular effect by kurtosis of TEO spectrum. Finally, the fault diagnosis results can be extracted from the TEO spectrum output by SVD-AKTEO. Simulation data and real data from a run-to-failure experiment of a rolling bearing are adopted to validate the efficiency, and comparative analysis demonstrates the feasibility to detect the early defect of the rolling bearing.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jing Jiao ◽  
Jianhai Yue ◽  
Di Pei ◽  
Zhunqing Hu

The research of rolling element bearings (REBs) fault diagnosis based on single sensor vibration signal analysis is very common. However, the information provided by an individual sensor is very limited, and the robustness of the system is poor. In this paper, a novel fault diagnosis method based on coaxial vibration signal feature fusion (CVSFF) is proposed to fully analyze the multisensor information of the system and build a more reliable diagnostic system. An ensemble empirical mode decomposition (EEMD) method is used to decompose the original vibration signal into a number of intrinsic mode functions (IMFs). Then the autocorrelation analysis is introduced to reduce the random noise remaining in IMFs. After that, the Rényi entropy is calculated as the feature of bearings. Finally, the features of coaxial vibration signal are fused by a multiple-kernel learning support vector machine (MKL-SVM) to classify bearing conditions. In order to verify the effectiveness of the CVSFF method in REB diagnosis, eight data sets from the Case Western Reserve University Bearing Data Center are selected. The fault classification results demonstrate that the proposed approach is a valuable tool for bearing faults detection, and the fused feature from coaxial sensors improves fault classification accuracy for REBs.


2019 ◽  
Vol 42 (2) ◽  
pp. 169-179
Author(s):  
Xiaocheng Li ◽  
Jingcheng Wang ◽  
Bin Zhang

Rolling element bearings are widely used in rotating machinery and, at the same time, they are easily damaged due to harsh operating environments and conditions. As a result, rolling element bearings are critical to the safe operation of the mechanical devices. The incipient fault information extraction of rolling bearings mainly faces the following difficulties: (1) The fault signal is too weak. (2) The fault mechanism and the dynamic model of the rolling bearing system are complex. (3) The oscillations caused by the fault shocks are overlapped due to the smaller impact between two adjacent faults. (4) The impact interval of the fault will change randomly. To overcome the aforementioned difficulties, a connection network constructed by resonance-based sparse signal decomposition (RSSD) and broad learning system (BLS) without the need for deep architecture, namely RSSD-BLS, is proposed for intelligent fault diagnosis. We construct RSSD-BLS by input layer, RSSD decomposition layer, feature layer and output layer. So, when the observed vibration signals are the input layer, the network first uses RSSD to decompose the raw vibration signal into high resonance components and low resonance components. Then, the network obtains energy spectrum features of high resonance components which decomposed by RSSD to extract the unique features in the feature. Finally, the network recognizes different fault conditions in the output layer. Through comparing with commonly used intelligent network diagnosis method, the superiority of the proposed RSSD-BLS is verified.


Sign in / Sign up

Export Citation Format

Share Document