scholarly journals Development of Propulsion Inverter Control System for High-Speed Maglev Based on LS-LSM

Author(s):  
Jeong-Min Jo ◽  
Jin-Ho Lee ◽  
Young-Jae Han ◽  
Chang-Young Lee ◽  
Kwan-Sub Lee

In the case of long-stator linear drive, unlike rotative drives for which speed or position sensors are a single unit attached to the shaft, these sensors extend along the guideway. The position signals transmitted from maglev vehicle can’t meet the need of the real-time propulsion control in the on-ground inverter power substations. In this paper the design of the propulsion inverter control system with a position estimator for driving long-stator synchronous motor in high speed maglev train is proposed. The experiments have been carried out at the 150m long guideway in O-song test track. To investigate the performance of the position estimator, the propulsion control system with and without the position estimator are compared. The result confirms that the proposed strategy can meet the dynamic property need of propulsion inverter control system for driving long-stator linear synchronous motors

2018 ◽  
Vol 4 (2) ◽  
pp. 62-72
Author(s):  
Feng Qin ◽  
Ying Lin ◽  
Diqiang Lu

Aim: For exploring and testing the key technology of high-speed maglev transportation propulsion control system, this paper designs and establishes a hardware-in-the-loop (HIL) real-time simulation system of the high-speed maglev transportation five-segment propulsion system. Materials and methods of the studies: According to the route conditions and propulsion segment division of Shanghai maglev demonstration and operation line, the real-time simulation platform based on dSPACE multiprocessor systems is implemented. The simulation system can achieve the functional simulation of all the high-power related equipment in the 5-segment area, including 8 sets of high-power converter units, 2 sets of medium-power converter units, 2 sets of low-power converter units, five-segment trackside switch stations and long-stator linear synchronous motors. The mathematical models of linear motors and converters are built in MATLAB/Simulink and System Generator, after compiling, they can be downloaded and executed in Field Programmable Logic Array (FPGA). All the interfaces connecting the simulation system to the propulsion control system physical equipment use real physical components as in the field, such as analog I/O, digital I/O, optical signals and Profibus. Results: By using CPU+FPGA hardware configuration, the simulation steps are greatly shortened and the response speed and accuracy of real-time simulation system are improved. The simulation system can simulate multiple operating modes such as multi-segment, multi-vehicle, double-track, double-feeding, step-by-step stator section changeover, and so on. The simulation results show that the maximum speed of the simulation system can reach 500 km/h. Conclusion: This HIL system can provide detailed real-time on-line test and verification of high speed maglev propulsion control system.


2012 ◽  
Vol 580 ◽  
pp. 155-159
Author(s):  
Xiang Ming Wang ◽  
Jin Chao Wang ◽  
Dong Hua Sun

In this paper, the real-time EtherCAT technology is introduced in detail, which including operating principle, communication protocol and the superiority performance of EtherCAT i.e. synchronicity, simultaneousness and high speed. To show how to design a slave system that considering the characteristics of application, the method of developing systems based no EtherCAT technology are proposed. Finally, a data acquisition system based on EtherCAT technology is designed. Application of EtherCAT technology can improve the real-time characteristics of data communication in wind power system.


2010 ◽  
Vol 46 (7) ◽  
pp. 2656-2664 ◽  
Author(s):  
Monir Sadat Hosseini ◽  
Sadegh Vaez-Zadeh

2011 ◽  
Vol 464 ◽  
pp. 272-278 ◽  
Author(s):  
Wei You ◽  
Min Xiu Kong ◽  
Li Ning Sun ◽  
Chan Chan Guo

In this paper, aiming at solving the problems of dynamic coupling effects and flexibility of joints and links, a kind of control system specialized for high payload industrial robots is proposed . After the comparisons between the control systems in all kinds of robots and numerical machines, industrial PC with TwinCAT real-time system is chosen as the motion control unit, EtherCAT is used for command transmitting. The whole control system has a decoupled and centralized control structure. The proposed control system is applied in control of a kind of high payload material handling robots with complex compound control algorithms. The final results shows that the control commands can be easily calculated and transmitted in one sample unit. The proposed control scheme is meaningful to real engineering application.


2008 ◽  
Vol 55 (4) ◽  
pp. 1548-1557 ◽  
Author(s):  
Tianjian Li ◽  
Y. Fujimoto

Author(s):  
Seonbin Lim ◽  
Junsun Yoo ◽  
No-Cheol Park

Abstract Electrodynamic (EDS) type suspension is appropriate for a high-speed maglev train as control is not essential to levitate a train. However, the trains might oscillate large in the vertical direction since there is no control for the EDS type maglev train. Linear Synchronous Motor (LSM) is used to propel trains as it can generate large propulsion force with high efficiency. LSM generate periodic, not uniform, Electromagnetic (EM) force and it cause vertical and lateral vibration. Therefore, EM forces acting on a maglev vehicle should be investigated to determine the vibration characteristics of a high-speed maglev train. An excitation force on bogies is nonlinearly changed by air gap between ground coils and magnets on bogies. Therefore, relative position of guide and a bogie could be defined to contracting time variant excitation force. The study focuses on verifying vertical and lateral vibration due to LSM that makes repeating propulsion force to a maglev vehicle. We made a transient 3-D EM analysis model that could simulate levitation and guidance force of a maglev vehicle. The model was constructed based on straight rail of the conventional maglev system, L0 series in Japan. We compared the simulation results, levitation, and guidance forces on single ground coil, with another study results. Also, total EM forces on a bogie in simulation results was compared with real track experimental results of another study. We could evaluate ride comport and running stability using our transient EM force by coupling with rigid body simulation.


Sign in / Sign up

Export Citation Format

Share Document