scholarly journals Fog Computing in Medical Internet-of-Things: Architecture, Implementation and Applications

Author(s):  
Harishchandra Dubey

In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one’s health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex; 2) The data, when communicated, are vulnerable to security and privacy issues; 3) The communication of the continuously collected data is not only costly but also energy hungry; 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks.This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a serviceoriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection. The book chapter ends with experiments and results showing how fog computing could lessen the obstacles of existing cloud-driven medical IoT solutions and enhance the overall performance of the system in terms of computing intelligence, transmission, storage, configurable, and security. The case studies on various types of physiological data shows that the proposed Fog architecture could be used for signal enhancement, processing and analysis of various types of bio-signals.

2020 ◽  
Author(s):  
Yanhui Liu ◽  
Jianbiao Zhang ◽  
Jing Zhan

Abstract With the development of the Internet of Things (IoT) field, more and more data are generated by IoT devices and transferred over the network. However, a large amount of IoT data is sensitive, and the leakage of such data is a privacy breach. The security of sensitive IoT data is a big issue, as the data is shared over an insecure network channel. Current solutions include symmetric encryption and access controls to secure the data transfer, but they have some drawbacks such as a single point of failure. Blockchain is a promising distributed ledger technology that can prevent the malicious tampering of data, offering reliable data storage. This paper proposes a distributed access control system based on blockchain technology to secure IoT data. The proposed mechanism is based on fog computing and the concept of the alliance chain. This method uses mixed linear and nonlinear spatiotemporal chaotic systems (MLNCML) and the least significant bit (LSB) to encrypt the IoT data on an edge node and then upload the encrypted data to the cloud. The proposed mechanism can solve the problem of a single point of failure of access control by providing the dynamic and fine-grained access control for IoT data. The experimental results of this method demonstrated that it can protect the privacy of IoT data efficiently.


2021 ◽  
Vol 17 (3) ◽  
pp. 155014772110017
Author(s):  
Han-Yu Lin

Fog computing is viewed as an extended technique of cloud computing. In Internet of things–based collaborative fog computing systems, a fog node aggregating lots of data from Internet of things devices has to transmit the information to distributed cloud servers that will collaboratively verify it based on some predefined auditing policy. However, compromised fog nodes controlled by an adversary might inject bogus data to cheat or confuse remote servers. It also causes the waste of communication and computation resources. To further control the lifetime of signing capability for fog nodes, an appropriate mechanism is crucial. In this article, the author proposes a time-constrained strong multi-designated verifier signature scheme to meet the above requirement. In particular, a conventional non-delegatable strong multi-designated verifier signature scheme with low computation is first given. Based on its constructions, we show how to transform it into a time-constrained variant. The unforgeability of the proposed schemes is formally proved based on the famous elliptic curve discrete logarithm assumption. The security requirement of strong signer ambiguity for our substantial constructions is also analyzed by utilizing the intractable assumption of decisional Diffie–Hellman. Moreover, some comparisons in terms of the signature size and computational costs for involved entities among related mechanisms are made.


Internet of things (IoT) is an emerging concept which aims to connect billions of devices with each other anytime regardless of their location. Sadly, these IoT devices do not have enough computing resources to process huge amount of data. Therefore, Cloud computing is relied on to provide these resources. However, cloud computing based architecture fails in applications that demand very low and predictable latency, therefore the need for fog computing which is a new paradigm that is regarded as an extension of cloud computing to provide services between end users and the cloud user. Unfortunately, Fog-IoT is confronted with various security and privacy risks and prone to several cyberattacks which is a serious challenge. The purpose of this work is to present security and privacy threats towards Fog-IoT platform and discuss the security and privacy requirements in fog computing. We then proceed to propose an Intrusion Detection System (IDS) model using Standard Deep Neural Network's Back Propagation algorithm (BPDNN) to mitigate intrusions that attack Fog-IoT platform. The experimental Dataset for the proposed model is obtained from the Canadian Institute for Cybersecurity 2017 Dataset. Each instance of the attack in the dataset is separated into separate files, which are DoS (Denial of Service), DDoS (Distributed Denial of Service), Web Attack, Brute Force FTP, Brute Force SSH, Heartbleed, Infiltration and Botnet (Bot Network) Attack. The proposed model is trained using a 3-layer BP-DNN


Author(s):  
Chandu Thota ◽  
Revathi Sundarasekar ◽  
Gunasekaran Manogaran ◽  
Varatharajan R ◽  
Priyan M. K.

This chapter proposes an efficient centralized secure architecture for end to end integration of IoT based healthcare system deployed in Cloud environment. The proposed platform uses Fog Computing environment to run the framework. In this chapter, health data is collected from sensors and collected sensor data are securely sent to the near edge devices. Finally, devices transfer the data to the cloud for seamless access by healthcare professionals. Security and privacy for patients' medical data are crucial for the acceptance and ubiquitous use of IoT in healthcare. The main focus of this work is to secure Authentication and Authorization of all the devices, Identifying and Tracking the devices deployed in the system, Locating and tracking of mobile devices, new things deployment and connection to existing system, Communication among the devices and data transfer between remote healthcare systems. The proposed system uses asynchronous communication between the applications and data servers deployed in the cloud environment.


Author(s):  
S. R. Mani Sekhar ◽  
Sharmitha S. Bysani ◽  
Vasireddy Prabha Kiranmai

Security and privacy issues are the challenging areas in the field of internet of things (IoT) and fog computing. IoT and fog has become an involving technology allowing major changes in the field of information systems and communication systems. This chapter provides the introduction of IoT and fog technology with a brief explanation of how fog is overcoming the challenges of cloud computing. Thereafter, the authors discuss the different security and privacy issues and its related solutions. Furthermore, they present six different case studies which will help the reader to understand the platform of IoT in fog.


Author(s):  
G. Rama Subba Reddy ◽  
K. Rangaswamy ◽  
Malla Sudhakara ◽  
Pole Anjaiah ◽  
K. Reddy Madhavi

Internet of things (IoT) has given a promising chance to construct amazing industrial frameworks and applications by utilizing wireless and sensor devices. To support IIoT benefits efficiently, fog computing is typically considered as one of the potential solutions. Be that as it may, IIoT services still experience issues such as high-latency and unreliable connections between cloud and terminals of IIoT. In addition to this, numerous security and privacy issues are raised and affect the users of the distributed computing environment. With an end goal to understand the improvement of IoT in industries, this chapter presents the current research of IoT along with the key enabling technologies. Further, the architecture and features of fog computing towards the fog-assisted IoT applications are presented. In addition to this, security and protection threats along with safety measures towards the IIoT applications are discussed.


Author(s):  
Nida Kauser Khanum ◽  
Pankaj Lathar ◽  
G. M. Siddesh

Fog computing is an extension of cloud computing, and it is one of the most important architypes in the current world. Fog computing is like cloud computing as it provides data storage, computation, processing, and application services to end-users. In this chapter, the authors discuss the security and privacy issues concerned with fog computing. The issues present in cloud are also inherited by fog computing, but the same methods available for cloud computing are not applicable to fog computing due to its decentralized nature. The authors also discuss a few real-time applications like healthcare systems, intelligent food traceability, surveillance video stream processing, collection, and pre-processing of speech data. Finally, the concept of decoy technique and intrusion detection and prevention technique is covered.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2784 ◽  
Author(s):  
Chao Qu ◽  
Ming Tao ◽  
Ruifen Yuan

With the fast development and expansion of the Internet of Things (IoT), billions of smart devices are being continuously connected, and smart homes, as a typical IoT application, are providing people with various convenient applications, but face security and privacy issues. The idea of Blockchain (BC) theory has brought about a potential solution to the IoT security problem. The emergence of blockchain technology has brought about a change of decentralized management, providing an effective solution for the protection of network security and privacy. On the other hand, the smart devices in IoT are always lightweight and have less energy and memory. This makes the application of blockchain difficult. Against this background, this paper proposes a blockchain model based on hypergraphs. The aims of this model are to reduce the storage consumption and to solve the additional security issues. In the model, we use the hyperedge as the organization of storage nodes and convert the entire networked data storage into part network storage. We discuss the design of the model and security strategy in detail, introducing some use cases in a smart home network and evaluating the storage performance of the model through simulation experiments and an evaluation of the network.


Sign in / Sign up

Export Citation Format

Share Document