scholarly journals Greatly Enhanced Photovoltaic Performance of Crystalline Silicon Solar Cells Using Metal Oxide Layers by Band-Gap Alignment Engineering

Author(s):  
Lingling Zhou ◽  
Lufei Xiao ◽  
Hai Yang ◽  
Jie Liu ◽  
Xibin Yu

Band-gap alignment engineering has now been extensively studied due to its high potential application. Here we demonstrate a simple route to synthesize two metal oxide layers and align them together according to their bandgaps on surface of crystalline silicon(c-Si) solar cells. The metal oxide layers can not only extend absorption spectrum to generate extra carriers but also serve to separate electron-hole pairs more efficiently. As a consequence, the photovoltaic performance of SnO2/CdO /Si double-layer solar cell (DLSC) is highly improved compared to CdO/Si and SnO2/Si single-layer solar cells(SLSCs) and SnO2/CdO/Si double-layer solar cell(DLSC). By the alignment engineering, the SnO2/CdO/Si DLSC produces a short circuit photocurrent (Jsc) of 38.20 mA/cm2, an open circuit photovoltage (Voc) of 0.575 V and a fill factor (FF) of 68.7%, corresponding to a light to electric power conversion efficiency (η) of 15.09% under AM1.5 illumination. These results suggest that with the use of metal oxide layers by band-gap alignment engineering, new avenues have been opened for developing high-efficiency and cost-effective c-Si solar cells.

Author(s):  
Lingling Zhou ◽  
Lufei Xiao ◽  
Hai Yang ◽  
Jie Liu ◽  
Xibin Yu

Band-gap alignment engineering has now been extensively studied due to its high potential application. Here we demonstrate a simple route to synthesize two metal oxide layers and align them together according to their bandgaps on surface of crystalline silicon (c-Si) solar cells. The metal oxide layers can not only extend absorption spectrum to generate extra carriers but also serve to separate electron-hole pairs more efficiently. As a consequence, the photovoltaic performance of SnO2/CdO /Si double-layer solar cell (DLSC) is highly improved compared to CdO/Si and SnO2/Si single-layer solar cells(SLSCs) and SnO2/CdO/Si double-layer solar cell (DLSC). By the alignment engineering, the SnO2/CdO/Si DLSC produces a short circuit photocurrent (Jsc) of 38.20 mA/cm2, an open circuit photovoltage (Voc) of 0.575 V and a fill factor (FF) of 68.7%, corresponding to a light to electric power conversion efficiency (η) of 15.09% under AM1.5 illumination. These results suggest that with the use of metal oxide layers by band-gap alignment engineering, new avenues have been opened for developing high-efficiency and cost-effective c-Si solar cells.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3397 ◽  
Author(s):  
Jong Lim ◽  
Woo Shin ◽  
Hyemi Hwang ◽  
Young-Chul Ju ◽  
Suk Ko ◽  
...  

Cut solar cells have received considerable attention recently as they can reduce electrical output degradation when the c-Si solar cells (crystalline-silicon solar cells) are shaded. Cut c-Si solar cells have a lower short-circuit current than normal solar cells and the decrease in short-circuit currents is similar to the shading effect of c-Si solar cells. However, the results of this study’s experiment show that the shadow effect of a c-Si solar cell reduces the V o c (open circuit voltage) in the c-Si solar cell but the V o c does not change when the c-Si solar cell is cut because the amount of incident light does not change. In this paper, the limitations of the electrical power analysis of the cut solar cells were identified when only photo current was considered and the analysis of the electric output of the cut c-Si solar cells was interpreted with a method different from that used in previous analyses. Electrical output was measured when the shaded and cut rates of c-Si solar cells were increased from 0% to 25, 50 and 75%, and a new theoretical model was compared with the experimental results using MATLAB.


2019 ◽  
Vol 821 ◽  
pp. 407-413 ◽  
Author(s):  
Mohamed Orabi Moustafa ◽  
Tariq Alzoubi

The performance of the InGaN single-junction thin film solar cells has been analyzed numerically employing the Solar Cell Capacitance Simulator (SCAPS-1D). The electrical properties and the photovoltaic performance of the InGaN solar cells were studied by changing the doping concentrations and the bandgap energy along with each layer, i.e. n-and p-InGaN layers. The results reveal an optimum efficiency of the InGaN solar cell of ~ 15.32 % at a band gap value of 1.32 eV. It has been observed that lowering the doping concentration NA leads to an improvement of the short circuit current density (Jsc) (34 mA/cm2 at NA of 1016 cm−3). This might be attributed to the increase of the carrier mobility and hence an enhancement in the minority carrier diffusion length leading to a better collection efficiency. Additionally, the results show that increasing the front layer thickness of the InGaN leads to an increase in the Jsc and to the conversion efficiency (η). This has been referred to the increase in the photogenerated current, as well as to the less surface recombination rate.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Minghua Li ◽  
Libin Zeng ◽  
Yifeng Chen ◽  
Lin Zhuang ◽  
Xuemeng Wang ◽  
...  

We presented a method to use SiO2/SiNx:H double layer antireflection coatings (DARC) on acid textures to fabricate colored multicrystalline silicon (mc-Si) solar cells. Firstly, we modeled the perceived colors and short-circuit current density (Jsc) as a function of SiNx:H thickness for single layer SiNx:H, and as a function of SiO2thickness for the case of SiO2/SiNx:H (DARC) with fixed SiNx:H (refractive indexn=2.1at 633 nm, and thickness = 80 nm). The simulation results show that it is possible to achieve various colors by adjusting the thickness of SiO2to avoid significant optical losses. Therefore, we carried out the experiments by using electron beam (e-beam) evaporation to deposit a layer of SiO2over the standard SiNx:H for156×156 mm2mc-Si solar cells which were fabricated by a conventional process. Semisphere reflectivity over 300 nm to 1100 nm andI-Vmeasurements were performed for grey yellow, purple, deep blue, and green cells. The efficiency of colored SiO2/SiNx:H DARC cells is comparable to that of standard SiNx:H light blue cells, which shows the potential of colored cells in industrial applications.


2013 ◽  
Vol 16 (1) ◽  
pp. 48-56
Author(s):  
Vu Ngoc Hoang ◽  
Linh Ngoc Tran ◽  
Lan Truong ◽  
Khoa Thanh Nhat Phan ◽  
Chien Mau Dang ◽  
...  

In this report we present series of experiments during which the short circuit current of mono crystalline silicon solar cell was improved step by step so as a consequence the efficiency was increased. At first, the front contact of solar cell was optimized to reduce the shadow loss and the series resistance. Then surface treatments were prepared by TMAH solution to reduce the total light reflectance and to improve the light trapping effect. Finally, antireflection coatings were deposited to passivate the front surface either by silicon nitride thin layer or to increase the collection probability by indium tin oxide layer, and to reduce the reflectance of light. As a result, solar cells of about 13% have been obtained, with the average open circuit voltage Voc about 527mV, with the fill factor about 68% and the short circuit current about 7.92 mA/cm2 under the irradiation density of 21 mW/cm2.


2016 ◽  
Vol 61 (4) ◽  
pp. 1889-1894 ◽  
Author(s):  
P. Panek

Abstract The influence of a p-type Si with different resistivity, charge carrier lifetime and emitter dopant impurities concentration on the crystalline silicon solar cells parameters were analyzed and experimentally checked. The findings were determined by quasi-steady-state photoconductance, current-voltage and spectral response methods. The study was accompanied by solar device simulation using a numerical PC1D program. The highest photoconversion efficiency of 15.13 % was obtained for the moncrystalline (Cz-Si) solar cell with a base resistivity of 1.8 Ωcm and an effective charge carrier lifetime of 22.9 μs. The results clearly confirmed the importance concerning the dopant level in a Si base material in relation to open circuit voltage and short circuit current possible to obtain from the solar cell. Reduction of a base material resistivtiy leads to a lower value of an effective charge carrier lifetime and photoconversion efficiency both for Cz-Si and multicrystalline (mc-Si) solar cells. The experimental results and calculation showed, that in the case of a solar cell produced on the basis of crystalline silicon, the most important spectral range for an efficiency of a cell is covering a wavelength range of 587 ÷ 838 nm.


Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 505 ◽  
Author(s):  
Lingling Zhou ◽  
Lufei Xiao ◽  
Hai Yang ◽  
Jie Liu ◽  
Xibin Yu

2008 ◽  
Vol 1101 ◽  
Author(s):  
Jong-San Im ◽  
Jin-Wan Jeon ◽  
Koeng Su Lim

AbstractThis paper describes a new method to make surface textures for photovoltaic application. Using this method, we can make textures having various shapes. The first step is to make photo-resist (PR) molds using the polymer dispersed liquid crystal (PDLC) film. The second step is to transfer the PR molds to silicon by inductively coupled plasma etching process. The final step is a solar cell fabrication process. The structure of the solar cell is simple Al Grid/c-Si/Al back contact. The solar cells show the increase of the short circuit current (Jsc) comparing to the planar cells. By this texturing method, we can get solar cells having various textures which we want to make.


2016 ◽  
Vol 25 (01n02) ◽  
pp. 1640008
Author(s):  
R. Miyazawa ◽  
H. Wakabayashi ◽  
K. Tsutsui ◽  
H. Iwai ◽  
K. Kakushima

Photovoltaic characteristics of ultra-thin single crystalline Si solar cells with thicknesses ranging from 7.6 to 3.3 nm are presented. While the short-circuit current (ISC) AM1.5 illumination has shown a linear relationship with the volume of the Si layer, a gradual increase in the open-circuit voltage (VOC) with thinner Si layer has been confirmed, implying the bandgap enlargement of the Si layer due to quantum confinement. Spectral response measurement has revealed an increased optical bandgap of 1.3 eV for 3.3-nm-thick Si solar cells, which is wider than that of 7.6-nm-thick Si ones. Although some process related issues have become clear during the fabrication of solar cells, they can be utilized as top cells for tandem configurations, exceeding the limit of the bulk Si solar cells.


2016 ◽  
Vol 33 (3) ◽  
pp. 172-175 ◽  
Author(s):  
Kazimierz Drabczyk ◽  
Jaroslaw Domaradzki ◽  
Grazyna Kulesza-Matlak ◽  
Marek Lipinski ◽  
Danuta Kaczmarek

Purpose The purpose of this paper was investigation and comparison of electrical and optical properties of crystalline silicon solar cells with ITO or TiO2 coating. The ITO, similar to TiO2, is very well transparent in the visible part of optical radiation; however, its low resistivity (lower that 10-3 Ohm/cm) makes it possible to use simultaneously as a transparent electrode for collection of photo-generated electrical charge carriers. This might also invoke increasing the distance between screen-printed metal fingers at the front of the solar cell that would increase of the cell’s active area. Performed optical investigation showed that applied ITO thin film fulfill standard requirements according to antireflection properties when it was deposited on the surface of silicon solar cell. Design/methodology/approach Two sets of samples were prepared for comparison. In the first one, the ITO thin film was deposited directly on the crystalline silicon substrate with highly doped emitter region. In the second case, the TCO film was deposited on the same type of silicon substrate but with additional ultrathin SiO2 passivation. The fingers lines of 80 μm width were then screen-printed on the ITO layer with two different spaces between fingers for each set. The influence of application of the ITO electrode and the type of metal electrodes patterns on the electrical performance of the prepared solar cells was investigated through optical and electrical measurements. Findings The electrical parameters such as short-circuit current (Jsc), open circuit voltage (Voc), fill factor (FF) and conversion efficiency were determined on a basis of I-V characteristics. Short-circuit current density (Jsc) was equal to 32 mA/cm2 for a solar cell with a typical antireflection layer and 31.5 mA/cm2 for the cell with ITO layer, respectively. Additionally, electroluminescence of prepared cells was measured and analysed. Originality/value The influence of the properties of ITO electrode on the electrical performance of crystalline silicon solar cells was investigated through complex optical, electrical and electroluminescence measurements.


Sign in / Sign up

Export Citation Format

Share Document