scholarly journals The AMSU-based Hydrological Bundle Climate Data Record – Description and Comparison with Other Data Sets

Author(s):  
Ralph Ferraro ◽  
Brian Nelson ◽  
Tom Smith ◽  
Olivier Prat

Passive microwave measurements have been available on satellites dating back to the 1970s on research satellites flown by the National Aeronautics and Space Administration (NASA). Since then, several other sensors have been flown to retrieve hydrological products for both operational weather applications (e.g., the Special Sensor Microwave/Imager–SSM/I; the Advanced Microwave Sounding Unit–AMSU) and climate applications (e.g., the Advanced Microwave Scanning Radiometer–AMSR; the Tropical Rainfall Measurement Mission Microwave Imager–TMI; the Global Precipitation Mission Microwave Imager–GMI). Here the focus is on measurements from the AMSU-A, AMSU-B and Microwave Humidity Sounder (MHS). These sensors have been in operation since 1998 with the launch of NOAA-15, and are also on board NOAA-16, -17, -18, -19 and the MetOp-A and -B satellites. A data set called the “Hydrological Bundle” is a Climate Data Record (CDR) that utilizes brightness temperatures from Fundamental CDRs to generate Thematic CDRs (TCDR). The TCDR’s include: Total Precipitable Water (TPW), Cloud Liquid Water (CLW), Sea-Ice concentration (SIC), Land surface temperature (LST), Land surface emissivity (LSE) for 23, 31, 50 GHz, rain rate (RR), snow cover (SC), ice water path (IWP), and snow water equivalent (SWE). The TCDR’s are shown to be in general good agreement with similar products from other sources such as the Global Precipitation Climatology Project (GPCP) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA-2). Because of the careful intercalibration of the FCDR’s, little bias is found among the different TCDR’s produced from individual NOAA and MetOp satellites, except for normal diurnal cycle differences.

2018 ◽  
Vol 10 (10) ◽  
pp. 1640 ◽  
Author(s):  
Ralph Ferraro ◽  
Brian Nelson ◽  
Tom Smith ◽  
Olivier Prat

Passive microwave measurements have been available on satellites back to the 1970s, first flown on research satellites developed by the National Aeronautics and Space Administration (NASA). Since then, several other sensors have been flown to retrieve hydrological products for both operational weather applications (e.g., the Special Sensor Microwave/Imager—SSM/I; the Advanced Microwave Sounding Unit—AMSU) and climate applications (e.g., the Advanced Microwave Scanning Radiometer—AMSR; the Tropical Rainfall Measurement Mission Microwave Imager—TMI; the Global Precipitation Mission Microwave Imager—GMI). Here, the focus is on measurements from the AMSU-A, AMSU-B, and Microwave Humidity Sounder (MHS). These sensors have been in operation since 1998, with the launch of NOAA-15, and are also on board NOAA-16, -17, -18, -19, and the MetOp-A and -B satellites. A data set called the “Hydrological Bundle” is a climate data record (CDR) that utilizes brightness temperatures from fundamental CDRs (FCDRs) to generate thematic CDRs (TCDRs). The TCDRs include total precipitable water (TPW), cloud liquid water (CLW), sea-ice concentration (SIC), land surface temperature (LST), land surface emissivity (LSE) for 23, 31, 50 GHz, rain rate (RR), snow cover (SC), ice water path (IWP), and snow water equivalent (SWE). The TCDRs are shown to be in general good agreement with similar products from other sources, such as the Global Precipitation Climatology Project (GPCP) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA-2). Due to the careful intercalibration of the FCDRs, little bias is found among the different TCDRs produced from individual NOAA and MetOp satellites, except for normal diurnal cycle differences.


2018 ◽  
Vol 10 (8) ◽  
pp. 1306 ◽  
Author(s):  
Wesley Berg ◽  
Rachael Kroodsma ◽  
Christian Kummerow ◽  
Darren McKague

An intercalibrated Fundamental Climate Data Record (FCDR) of brightness temperatures (Tb) has been developed using data from a total of 14 research and operational conical-scanning microwave imagers. This dataset provides a consistent 30+ year data record of global observations that is well suited for retrieving estimates of precipitation, total precipitable water, cloud liquid water, ocean surface wind speed, sea ice extent and concentration, snow cover, soil moisture, and land surface emissivity. An initial FCDR was developed for a series of ten Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) instruments on board the Defense Meteorological Satellite Program spacecraft. An updated version of this dataset, including additional NASA and Japanese sensors, has been developed as part of the Global Precipitation Measurement (GPM) mission. The FCDR development efforts involved quality control of the original data, geolocation corrections, calibration corrections to account for cross-track and time-dependent calibration errors, and intercalibration to ensure consistency with the calibration reference. Both the initial SSMI(S) and subsequent GPM Level 1C FCDR datasets are documented, updated in near real-time, and publicly distributed.


2016 ◽  
Vol 10 (5) ◽  
pp. 2275-2290 ◽  
Author(s):  
Rasmus T. Tonboe ◽  
Steinar Eastwood ◽  
Thomas Lavergne ◽  
Atle M. Sørensen ◽  
Nicholas Rathmann ◽  
...  

Abstract. An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of microwave radiometer data from NASA's Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from October 1978 to April 2015 and updates and further developments are planned for the next phase of the project. The methodology for computing the sea ice concentration uses (1) numerical weather prediction (NWP) data input to a radiative transfer model for reduction of the impact of weather conditions on the measured brightness temperatures; (2) dynamical algorithm tie points to mitigate trends in residual atmospheric, sea ice, and water emission characteristics and inter-sensor differences/biases; and (3) a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new sea ice concentration uncertainty algorithm has been developed to estimate the spatial and temporal variability in sea ice concentration retrieval accuracy. A comparison to US National Ice Center sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate sea ice concentrations between open water and 100 % ice. The sea ice concentration climate data record is available for download at www.osi-saf.org, including documentation.


2019 ◽  
Author(s):  
Yahui Che ◽  
Jie Guang ◽  
Gerrit de Leeuw ◽  
Yong Xue ◽  
Ling Sun ◽  
...  

Abstract. Satellites provide information on the temporal and spatial distributions of aerosols on regional and global scales. With the same method applied to a single sensor all over the world, a consistent data set is to be expected. However, the application of different retrieval algorithms to the same sensor, and the use of a series of different sensors may lead to substantial differences and no single sensor or algorithm is better than any others everywhere and at any time. For the production of long-term climate data records, the use of multiple sensors cannot be avoided. The Along Track Scanning Radiometer (ATSR-2) and the advanced ATSR (AATSR) Aerosol Optical Depth (AOD) data sets have been used to provide a global AOD data record over land and ocean of 17-years (1995–2012), which is planned to be extended with AOD retrieved from a similar sensor, i.e. the Sea and Land Surface Temperature Radiometer (SLSTR) which flies on Sentinel-3A launched in early 2016. However, this leaves a gap of about 4 years between the end of the AATSR and the start of the SLSTR data records. To fill this gap, and to investigate the possibility to extend the ATSR data record to earlier years, the use of an AOD data set from the Advanced Very High Resolution Radiometer (AVHRR) is investigated. AOD data sets used in this study were retrieved from the ATSR sensors using the ATSR Dual View algorithm ADV v2.31 developed by Finnish Meteorological Institute (FMI), and from the AVHRR sensors using the ADL algorithm developed by RADI/CAR. Together these data sets cover a multi-decadal period (1983–2014). The study area includes two contrasting areas, both as regards aerosol content and composition and surface properties, i.e. a region over North-East (NE) China encompassing a highly populated urban/industrialized area (Beijing–Tianjin–Hebei) and a sparsely populated mountainous area. Ground-based AOD observations available from ground-based sunphotometer AOD data in AERONET and CARSNET are used as reference, together with radiation-derived AOD data at Beijing to cover the time before sunphotometer observations became available in the early 2000s. In addition, MODIS-Terra C6.1 AOD data are used as reference data set over the wide area where no ground-based data are available. All satellite data over the study area were validated versus the reference data, showing the qualification of MODIS for comparison with ATSR and AVHRR. The comparison with MODIS shows that AVHRR performs better that ATSR in the north of the study area (40° N), whereas further south ATSR provides better results. The validation versus sunphotometer AOD shows that both AVHRR and ATSR underestimate the AOD, with ATSR failing to provide reliable results in the winter time. This is likely due to the highly reflecting surface in the dry season, when AVHRR-retrieved AOD traces both MODIS and reference AOD data well. However, AVHRR does not provide AOD larger than about 0.6 and hence is not reliable in the summer season when high AOD values have been observed over the last decade. In these cases, ATSR performs much better, for AOD up to about 1.3. AVHRR-retrieved AOD compares favourably with radiance-derived AOD, except for AOD higher than about 0.6. These comparisons lead to the conclusion that AVHRR and ATSR AOD data records each have their strengths and weaknesses which need to be accounted for when combining them in a single multi-decadal climate data record.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mojtaba Sadeghi ◽  
Phu Nguyen ◽  
Matin Rahnamay Naeini ◽  
Kuolin Hsu ◽  
Dan Braithwaite ◽  
...  

AbstractAccurate long-term global precipitation estimates, especially for heavy precipitation rates, at fine spatial and temporal resolutions is vital for a wide variety of climatological studies. Most of the available operational precipitation estimation datasets provide either high spatial resolution with short-term duration estimates or lower spatial resolution with long-term duration estimates. Furthermore, previous research has stressed that most of the available satellite-based precipitation products show poor performance for capturing extreme events at high temporal resolution. Therefore, there is a need for a precipitation product that reliably detects heavy precipitation rates with fine spatiotemporal resolution and a longer period of record. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-Climate Data Record (PERSIANN-CCS-CDR) is designed to address these limitations. This dataset provides precipitation estimates at 0.04° spatial and 3-hourly temporal resolutions from 1983 to present over the global domain of 60°S to 60°N. Evaluations of PERSIANN-CCS-CDR and PERSIANN-CDR against gauge and radar observations show the better performance of PERSIANN-CCS-CDR in representing the spatiotemporal resolution, magnitude, and spatial distribution patterns of precipitation, especially for extreme events.


2021 ◽  
Vol 13 (9) ◽  
pp. 1701
Author(s):  
Leonardo Bagaglini ◽  
Paolo Sanò ◽  
Daniele Casella ◽  
Elsa Cattani ◽  
Giulia Panegrossi

This paper describes the Passive microwave Neural network Precipitation Retrieval algorithm for climate applications (PNPR-CLIM), developed with funding from the Copernicus Climate Change Service (C3S), implemented by ECMWF on behalf of the European Union. The algorithm has been designed and developed to exploit the two cross-track scanning microwave radiometers, AMSU-B and MHS, towards the creation of a long-term (2000–2017) global precipitation climate data record (CDR) for the ECMWF Climate Data Store (CDS). The algorithm has been trained on an observational dataset built from one year of MHS and GPM-CO Dual-frequency Precipitation Radar (DPR) coincident observations. The dataset includes the Fundamental Climate Data Record (FCDR) of AMSU-B and MHS brightness temperatures, provided by the Fidelity and Uncertainty in Climate data records from Earth Observation (FIDUCEO) project, and the DPR-based surface precipitation rate estimates used as reference. The combined use of high quality, calibrated and harmonized long-term input data (provided by the FIDUCEO microwave brightness temperature Fundamental Climate Data Record) with the exploitation of the potential of neural networks (ability to learn and generalize) has made it possible to limit the use of ancillary model-derived environmental variables, thus reducing the model uncertainties’ influence on the PNPR-CLIM, which could compromise the accuracy of the estimates. The PNPR-CLIM estimated precipitation distribution is in good agreement with independent DPR-based estimates. A multiscale assessment of the algorithm’s performance is presented against high quality regional ground-based radar products and global precipitation datasets. The regional and global three-year (2015–2017) verification analysis shows that, despite the simplicity of the algorithm in terms of input variables and processing performance, the quality of PNPR-CLIM outperforms NASA GPROF in terms of rainfall detection, while in terms of rainfall quantification they are comparable. The global analysis evidences weaknesses at higher latitudes and in the winter at mid latitudes, mainly linked to the poorer quality of the precipitation retrieval in cold/dry conditions.


2019 ◽  
Vol 11 (1) ◽  
pp. 101-110 ◽  
Author(s):  
James W. Roche ◽  
Robert Rice ◽  
Xiande Meng ◽  
Daniel R. Cayan ◽  
Michael D. Dettinger ◽  
...  

Abstract. We present hourly climate data to force land surface process models and assessments over the Merced and Tuolumne watersheds in the Sierra Nevada, California, for the water year 2010–2014 period. Climate data (38 stations) include temperature and humidity (23), precipitation (13), solar radiation (8), and wind speed and direction (8), spanning an elevation range of 333 to 2987 m. Each data set contains raw data as obtained from the source (Level 0), data that are serially continuous with noise and nonphysical points removed (Level 1), and, where possible, data that are gap filled using linear interpolation or regression with a nearby station record (Level 2). All stations chosen for this data set were known or documented to be regularly maintained and components checked and calibrated during the period. Additional time-series data included are available snow water equivalent records from automated stations (8) and manual snow courses (22), as well as distributed snow depth and co-located soil moisture measurements (2–6) from four locations spanning the rain–snow transition zone in the center of the domain. Spatial data layers pertinent to snowpack modeling in this data set are basin polygons and 100 m resolution rasters of elevation, vegetation type, forest canopy cover, tree height, transmissivity, and extinction coefficient. All data are available from online data repositories (https://doi.org/10.6071/M3FH3D).


2015 ◽  
Vol 96 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Hamed Ashouri ◽  
Kuo-Lin Hsu ◽  
Soroosh Sorooshian ◽  
Dan K. Braithwaite ◽  
Kenneth R. Knapp ◽  
...  

Abstract A new retrospective satellite-based precipitation dataset is constructed as a climate data record for hydrological and climate studies. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR) provides daily and 0.25° rainfall estimates for the latitude band 60°S–60°N for the period of 1 January 1983 to 31 December 2012 (delayed present). PERSIANN-CDR is aimed at addressing the need for a consistent, long-term, high-resolution, and global precipitation dataset for studying the changes and trends in daily precipitation, especially extreme precipitation events, due to climate change and natural variability. PERSIANN-CDR is generated from the PERSIANN algorithm using GridSat-B1 infrared data. It is adjusted using the Global Precipitation Climatology Project (GPCP) monthly product to maintain consistency of the two datasets at 2.5° monthly scale throughout the entire record. Three case studies for testing the efficacy of the dataset against available observations and satellite products are reported. The verification study over Hurricane Katrina (2005) shows that PERSIANN-CDR has good agreement with the stage IV radar data, noting that PERSIANN-CDR has more complete spatial coverage than the radar data. In addition, the comparison of PERSIANN-CDR against gauge observations during the 1986 Sydney flood in Australia reaffirms the capability of PERSIANN-CDR to provide reasonably accurate rainfall estimates. Moreover, the probability density function (PDF) of PERSIANN-CDR over the contiguous United States exhibits good agreement with the PDFs of the Climate Prediction Center (CPC) gridded gauge data and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) product. The results indicate high potential for using PERSIANN-CDR for long-term hydroclimate studies in regional and global scales.


2018 ◽  
Vol 22 (1) ◽  
pp. 241-263 ◽  
Author(s):  
Yu Zhang ◽  
Ming Pan ◽  
Justin Sheffield ◽  
Amanda L. Siemann ◽  
Colby K. Fisher ◽  
...  

Abstract. Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation (P), evapotranspiration (ET), runoff (R), and the total water storage change (TWSC) at 0.5∘ spatial resolution globally and to obtain water budget closure (i.e., to enforce P-ET-R-TWSC= 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984–2010), monthly 0.5∘ resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.


Sign in / Sign up

Export Citation Format

Share Document